Step |
Hyp |
Ref |
Expression |
1 |
|
qlift.1 |
|- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
2 |
|
qlift.2 |
|- ( ( ph /\ x e. X ) -> A e. Y ) |
3 |
|
qlift.3 |
|- ( ph -> R Er X ) |
4 |
|
qlift.4 |
|- ( ph -> X e. V ) |
5 |
|
nfcv |
|- F/_ y <. [ x ] R , A >. |
6 |
|
nfcv |
|- F/_ x [ y ] R |
7 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ A |
8 |
6 7
|
nfop |
|- F/_ x <. [ y ] R , [_ y / x ]_ A >. |
9 |
|
eceq1 |
|- ( x = y -> [ x ] R = [ y ] R ) |
10 |
|
csbeq1a |
|- ( x = y -> A = [_ y / x ]_ A ) |
11 |
9 10
|
opeq12d |
|- ( x = y -> <. [ x ] R , A >. = <. [ y ] R , [_ y / x ]_ A >. ) |
12 |
5 8 11
|
cbvmpt |
|- ( x e. X |-> <. [ x ] R , A >. ) = ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) |
13 |
12
|
rneqi |
|- ran ( x e. X |-> <. [ x ] R , A >. ) = ran ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) |
14 |
1 13
|
eqtri |
|- F = ran ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) |
15 |
2
|
ralrimiva |
|- ( ph -> A. x e. X A e. Y ) |
16 |
7
|
nfel1 |
|- F/ x [_ y / x ]_ A e. Y |
17 |
10
|
eleq1d |
|- ( x = y -> ( A e. Y <-> [_ y / x ]_ A e. Y ) ) |
18 |
16 17
|
rspc |
|- ( y e. X -> ( A. x e. X A e. Y -> [_ y / x ]_ A e. Y ) ) |
19 |
15 18
|
mpan9 |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. Y ) |
20 |
|
csbeq1 |
|- ( y = z -> [_ y / x ]_ A = [_ z / x ]_ A ) |
21 |
14 19 3 4 20
|
qliftfun |
|- ( ph -> ( Fun F <-> A. y A. z ( y R z -> [_ y / x ]_ A = [_ z / x ]_ A ) ) ) |