Metamath Proof Explorer


Theorem qliftfuns

Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1
|- F = ran ( x e. X |-> <. [ x ] R , A >. )
qlift.2
|- ( ( ph /\ x e. X ) -> A e. Y )
qlift.3
|- ( ph -> R Er X )
qlift.4
|- ( ph -> X e. V )
Assertion qliftfuns
|- ( ph -> ( Fun F <-> A. y A. z ( y R z -> [_ y / x ]_ A = [_ z / x ]_ A ) ) )

Proof

Step Hyp Ref Expression
1 qlift.1
 |-  F = ran ( x e. X |-> <. [ x ] R , A >. )
2 qlift.2
 |-  ( ( ph /\ x e. X ) -> A e. Y )
3 qlift.3
 |-  ( ph -> R Er X )
4 qlift.4
 |-  ( ph -> X e. V )
5 nfcv
 |-  F/_ y <. [ x ] R , A >.
6 nfcv
 |-  F/_ x [ y ] R
7 nfcsb1v
 |-  F/_ x [_ y / x ]_ A
8 6 7 nfop
 |-  F/_ x <. [ y ] R , [_ y / x ]_ A >.
9 eceq1
 |-  ( x = y -> [ x ] R = [ y ] R )
10 csbeq1a
 |-  ( x = y -> A = [_ y / x ]_ A )
11 9 10 opeq12d
 |-  ( x = y -> <. [ x ] R , A >. = <. [ y ] R , [_ y / x ]_ A >. )
12 5 8 11 cbvmpt
 |-  ( x e. X |-> <. [ x ] R , A >. ) = ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. )
13 12 rneqi
 |-  ran ( x e. X |-> <. [ x ] R , A >. ) = ran ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. )
14 1 13 eqtri
 |-  F = ran ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. )
15 2 ralrimiva
 |-  ( ph -> A. x e. X A e. Y )
16 7 nfel1
 |-  F/ x [_ y / x ]_ A e. Y
17 10 eleq1d
 |-  ( x = y -> ( A e. Y <-> [_ y / x ]_ A e. Y ) )
18 16 17 rspc
 |-  ( y e. X -> ( A. x e. X A e. Y -> [_ y / x ]_ A e. Y ) )
19 15 18 mpan9
 |-  ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. Y )
20 csbeq1
 |-  ( y = z -> [_ y / x ]_ A = [_ z / x ]_ A )
21 14 19 3 4 20 qliftfun
 |-  ( ph -> ( Fun F <-> A. y A. z ( y R z -> [_ y / x ]_ A = [_ z / x ]_ A ) ) )