| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlift.1 |  |-  F = ran ( x e. X |-> <. [ x ] R , A >. ) | 
						
							| 2 |  | qlift.2 |  |-  ( ( ph /\ x e. X ) -> A e. Y ) | 
						
							| 3 |  | qlift.3 |  |-  ( ph -> R Er X ) | 
						
							| 4 |  | qlift.4 |  |-  ( ph -> X e. V ) | 
						
							| 5 |  | nfcv |  |-  F/_ y <. [ x ] R , A >. | 
						
							| 6 |  | nfcv |  |-  F/_ x [ y ] R | 
						
							| 7 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ A | 
						
							| 8 | 6 7 | nfop |  |-  F/_ x <. [ y ] R , [_ y / x ]_ A >. | 
						
							| 9 |  | eceq1 |  |-  ( x = y -> [ x ] R = [ y ] R ) | 
						
							| 10 |  | csbeq1a |  |-  ( x = y -> A = [_ y / x ]_ A ) | 
						
							| 11 | 9 10 | opeq12d |  |-  ( x = y -> <. [ x ] R , A >. = <. [ y ] R , [_ y / x ]_ A >. ) | 
						
							| 12 | 5 8 11 | cbvmpt |  |-  ( x e. X |-> <. [ x ] R , A >. ) = ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) | 
						
							| 13 | 12 | rneqi |  |-  ran ( x e. X |-> <. [ x ] R , A >. ) = ran ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) | 
						
							| 14 | 1 13 | eqtri |  |-  F = ran ( y e. X |-> <. [ y ] R , [_ y / x ]_ A >. ) | 
						
							| 15 | 2 | ralrimiva |  |-  ( ph -> A. x e. X A e. Y ) | 
						
							| 16 | 7 | nfel1 |  |-  F/ x [_ y / x ]_ A e. Y | 
						
							| 17 | 10 | eleq1d |  |-  ( x = y -> ( A e. Y <-> [_ y / x ]_ A e. Y ) ) | 
						
							| 18 | 16 17 | rspc |  |-  ( y e. X -> ( A. x e. X A e. Y -> [_ y / x ]_ A e. Y ) ) | 
						
							| 19 | 15 18 | mpan9 |  |-  ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. Y ) | 
						
							| 20 |  | csbeq1 |  |-  ( y = z -> [_ y / x ]_ A = [_ z / x ]_ A ) | 
						
							| 21 | 14 19 3 4 20 | qliftfun |  |-  ( ph -> ( Fun F <-> A. y A. z ( y R z -> [_ y / x ]_ A = [_ z / x ]_ A ) ) ) |