Description: Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
||
| qlift.3 | |- ( ph -> R Er X ) |
||
| qlift.4 | |- ( ph -> X e. V ) |
||
| Assertion | qliftlem | |- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
| 2 | qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
|
| 3 | qlift.3 | |- ( ph -> R Er X ) |
|
| 4 | qlift.4 | |- ( ph -> X e. V ) |
|
| 5 | erex | |- ( R Er X -> ( X e. V -> R e. _V ) ) |
|
| 6 | 3 4 5 | sylc | |- ( ph -> R e. _V ) |
| 7 | ecelqsg | |- ( ( R e. _V /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
|
| 8 | 6 7 | sylan | |- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |