Metamath Proof Explorer


Theorem qliftval

Description: The value of the function F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1
|- F = ran ( x e. X |-> <. [ x ] R , A >. )
qlift.2
|- ( ( ph /\ x e. X ) -> A e. Y )
qlift.3
|- ( ph -> R Er X )
qlift.4
|- ( ph -> X e. V )
qliftval.4
|- ( x = C -> A = B )
qliftval.6
|- ( ph -> Fun F )
Assertion qliftval
|- ( ( ph /\ C e. X ) -> ( F ` [ C ] R ) = B )

Proof

Step Hyp Ref Expression
1 qlift.1
 |-  F = ran ( x e. X |-> <. [ x ] R , A >. )
2 qlift.2
 |-  ( ( ph /\ x e. X ) -> A e. Y )
3 qlift.3
 |-  ( ph -> R Er X )
4 qlift.4
 |-  ( ph -> X e. V )
5 qliftval.4
 |-  ( x = C -> A = B )
6 qliftval.6
 |-  ( ph -> Fun F )
7 1 2 3 4 qliftlem
 |-  ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) )
8 eceq1
 |-  ( x = C -> [ x ] R = [ C ] R )
9 1 7 2 8 5 6 fliftval
 |-  ( ( ph /\ C e. X ) -> ( F ` [ C ] R ) = B )