Description: The value of the function F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
||
qlift.3 | |- ( ph -> R Er X ) |
||
qlift.4 | |- ( ph -> X e. V ) |
||
qliftval.4 | |- ( x = C -> A = B ) |
||
qliftval.6 | |- ( ph -> Fun F ) |
||
Assertion | qliftval | |- ( ( ph /\ C e. X ) -> ( F ` [ C ] R ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | |- F = ran ( x e. X |-> <. [ x ] R , A >. ) |
|
2 | qlift.2 | |- ( ( ph /\ x e. X ) -> A e. Y ) |
|
3 | qlift.3 | |- ( ph -> R Er X ) |
|
4 | qlift.4 | |- ( ph -> X e. V ) |
|
5 | qliftval.4 | |- ( x = C -> A = B ) |
|
6 | qliftval.6 | |- ( ph -> Fun F ) |
|
7 | 1 2 3 4 | qliftlem | |- ( ( ph /\ x e. X ) -> [ x ] R e. ( X /. R ) ) |
8 | eceq1 | |- ( x = C -> [ x ] R = [ C ] R ) |
|
9 | 1 7 2 8 5 6 | fliftval | |- ( ( ph /\ C e. X ) -> ( F ` [ C ] R ) = B ) |