| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qeqnumdivden |  |-  ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( A e. QQ -> ( A x. ( denom ` A ) ) = ( ( ( numer ` A ) / ( denom ` A ) ) x. ( denom ` A ) ) ) | 
						
							| 3 |  | qnumcl |  |-  ( A e. QQ -> ( numer ` A ) e. ZZ ) | 
						
							| 4 | 3 | zcnd |  |-  ( A e. QQ -> ( numer ` A ) e. CC ) | 
						
							| 5 |  | qdencl |  |-  ( A e. QQ -> ( denom ` A ) e. NN ) | 
						
							| 6 | 5 | nncnd |  |-  ( A e. QQ -> ( denom ` A ) e. CC ) | 
						
							| 7 | 5 | nnne0d |  |-  ( A e. QQ -> ( denom ` A ) =/= 0 ) | 
						
							| 8 | 4 6 7 | divcan1d |  |-  ( A e. QQ -> ( ( ( numer ` A ) / ( denom ` A ) ) x. ( denom ` A ) ) = ( numer ` A ) ) | 
						
							| 9 | 2 8 | eqtrd |  |-  ( A e. QQ -> ( A x. ( denom ` A ) ) = ( numer ` A ) ) |