Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
|- _om e. On |
2 |
|
nnenom |
|- NN ~~ _om |
3 |
2
|
ensymi |
|- _om ~~ NN |
4 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ NN ) -> NN e. dom card ) |
5 |
1 3 4
|
mp2an |
|- NN e. dom card |
6 |
|
znnen |
|- ZZ ~~ NN |
7 |
|
ennum |
|- ( ZZ ~~ NN -> ( ZZ e. dom card <-> NN e. dom card ) ) |
8 |
6 7
|
ax-mp |
|- ( ZZ e. dom card <-> NN e. dom card ) |
9 |
5 8
|
mpbir |
|- ZZ e. dom card |
10 |
|
xpnum |
|- ( ( ZZ e. dom card /\ NN e. dom card ) -> ( ZZ X. NN ) e. dom card ) |
11 |
9 5 10
|
mp2an |
|- ( ZZ X. NN ) e. dom card |
12 |
|
eqid |
|- ( x e. ZZ , y e. NN |-> ( x / y ) ) = ( x e. ZZ , y e. NN |-> ( x / y ) ) |
13 |
|
ovex |
|- ( x / y ) e. _V |
14 |
12 13
|
fnmpoi |
|- ( x e. ZZ , y e. NN |-> ( x / y ) ) Fn ( ZZ X. NN ) |
15 |
12
|
rnmpo |
|- ran ( x e. ZZ , y e. NN |-> ( x / y ) ) = { z | E. x e. ZZ E. y e. NN z = ( x / y ) } |
16 |
|
elq |
|- ( z e. QQ <-> E. x e. ZZ E. y e. NN z = ( x / y ) ) |
17 |
16
|
abbi2i |
|- QQ = { z | E. x e. ZZ E. y e. NN z = ( x / y ) } |
18 |
15 17
|
eqtr4i |
|- ran ( x e. ZZ , y e. NN |-> ( x / y ) ) = QQ |
19 |
|
df-fo |
|- ( ( x e. ZZ , y e. NN |-> ( x / y ) ) : ( ZZ X. NN ) -onto-> QQ <-> ( ( x e. ZZ , y e. NN |-> ( x / y ) ) Fn ( ZZ X. NN ) /\ ran ( x e. ZZ , y e. NN |-> ( x / y ) ) = QQ ) ) |
20 |
14 18 19
|
mpbir2an |
|- ( x e. ZZ , y e. NN |-> ( x / y ) ) : ( ZZ X. NN ) -onto-> QQ |
21 |
|
fodomnum |
|- ( ( ZZ X. NN ) e. dom card -> ( ( x e. ZZ , y e. NN |-> ( x / y ) ) : ( ZZ X. NN ) -onto-> QQ -> QQ ~<_ ( ZZ X. NN ) ) ) |
22 |
11 20 21
|
mp2 |
|- QQ ~<_ ( ZZ X. NN ) |
23 |
|
nnex |
|- NN e. _V |
24 |
23
|
enref |
|- NN ~~ NN |
25 |
|
xpen |
|- ( ( ZZ ~~ NN /\ NN ~~ NN ) -> ( ZZ X. NN ) ~~ ( NN X. NN ) ) |
26 |
6 24 25
|
mp2an |
|- ( ZZ X. NN ) ~~ ( NN X. NN ) |
27 |
|
xpnnen |
|- ( NN X. NN ) ~~ NN |
28 |
26 27
|
entri |
|- ( ZZ X. NN ) ~~ NN |
29 |
|
domentr |
|- ( ( QQ ~<_ ( ZZ X. NN ) /\ ( ZZ X. NN ) ~~ NN ) -> QQ ~<_ NN ) |
30 |
22 28 29
|
mp2an |
|- QQ ~<_ NN |
31 |
|
qex |
|- QQ e. _V |
32 |
|
nnssq |
|- NN C_ QQ |
33 |
|
ssdomg |
|- ( QQ e. _V -> ( NN C_ QQ -> NN ~<_ QQ ) ) |
34 |
31 32 33
|
mp2 |
|- NN ~<_ QQ |
35 |
|
sbth |
|- ( ( QQ ~<_ NN /\ NN ~<_ QQ ) -> QQ ~~ NN ) |
36 |
30 34 35
|
mp2an |
|- QQ ~~ NN |