| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omelon |
|- _om e. On |
| 2 |
|
nnenom |
|- NN ~~ _om |
| 3 |
2
|
ensymi |
|- _om ~~ NN |
| 4 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ NN ) -> NN e. dom card ) |
| 5 |
1 3 4
|
mp2an |
|- NN e. dom card |
| 6 |
|
znnen |
|- ZZ ~~ NN |
| 7 |
|
ennum |
|- ( ZZ ~~ NN -> ( ZZ e. dom card <-> NN e. dom card ) ) |
| 8 |
6 7
|
ax-mp |
|- ( ZZ e. dom card <-> NN e. dom card ) |
| 9 |
5 8
|
mpbir |
|- ZZ e. dom card |
| 10 |
|
xpnum |
|- ( ( ZZ e. dom card /\ NN e. dom card ) -> ( ZZ X. NN ) e. dom card ) |
| 11 |
9 5 10
|
mp2an |
|- ( ZZ X. NN ) e. dom card |
| 12 |
|
eqid |
|- ( x e. ZZ , y e. NN |-> ( x / y ) ) = ( x e. ZZ , y e. NN |-> ( x / y ) ) |
| 13 |
|
ovex |
|- ( x / y ) e. _V |
| 14 |
12 13
|
fnmpoi |
|- ( x e. ZZ , y e. NN |-> ( x / y ) ) Fn ( ZZ X. NN ) |
| 15 |
12
|
rnmpo |
|- ran ( x e. ZZ , y e. NN |-> ( x / y ) ) = { z | E. x e. ZZ E. y e. NN z = ( x / y ) } |
| 16 |
|
elq |
|- ( z e. QQ <-> E. x e. ZZ E. y e. NN z = ( x / y ) ) |
| 17 |
16
|
eqabi |
|- QQ = { z | E. x e. ZZ E. y e. NN z = ( x / y ) } |
| 18 |
15 17
|
eqtr4i |
|- ran ( x e. ZZ , y e. NN |-> ( x / y ) ) = QQ |
| 19 |
|
df-fo |
|- ( ( x e. ZZ , y e. NN |-> ( x / y ) ) : ( ZZ X. NN ) -onto-> QQ <-> ( ( x e. ZZ , y e. NN |-> ( x / y ) ) Fn ( ZZ X. NN ) /\ ran ( x e. ZZ , y e. NN |-> ( x / y ) ) = QQ ) ) |
| 20 |
14 18 19
|
mpbir2an |
|- ( x e. ZZ , y e. NN |-> ( x / y ) ) : ( ZZ X. NN ) -onto-> QQ |
| 21 |
|
fodomnum |
|- ( ( ZZ X. NN ) e. dom card -> ( ( x e. ZZ , y e. NN |-> ( x / y ) ) : ( ZZ X. NN ) -onto-> QQ -> QQ ~<_ ( ZZ X. NN ) ) ) |
| 22 |
11 20 21
|
mp2 |
|- QQ ~<_ ( ZZ X. NN ) |
| 23 |
|
nnex |
|- NN e. _V |
| 24 |
23
|
enref |
|- NN ~~ NN |
| 25 |
|
xpen |
|- ( ( ZZ ~~ NN /\ NN ~~ NN ) -> ( ZZ X. NN ) ~~ ( NN X. NN ) ) |
| 26 |
6 24 25
|
mp2an |
|- ( ZZ X. NN ) ~~ ( NN X. NN ) |
| 27 |
|
xpnnen |
|- ( NN X. NN ) ~~ NN |
| 28 |
26 27
|
entri |
|- ( ZZ X. NN ) ~~ NN |
| 29 |
|
domentr |
|- ( ( QQ ~<_ ( ZZ X. NN ) /\ ( ZZ X. NN ) ~~ NN ) -> QQ ~<_ NN ) |
| 30 |
22 28 29
|
mp2an |
|- QQ ~<_ NN |
| 31 |
|
qex |
|- QQ e. _V |
| 32 |
|
nnssq |
|- NN C_ QQ |
| 33 |
|
ssdomg |
|- ( QQ e. _V -> ( NN C_ QQ -> NN ~<_ QQ ) ) |
| 34 |
31 32 33
|
mp2 |
|- NN ~<_ QQ |
| 35 |
|
sbth |
|- ( ( QQ ~<_ NN /\ NN ~<_ QQ ) -> QQ ~~ NN ) |
| 36 |
30 34 35
|
mp2an |
|- QQ ~~ NN |