Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
|- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
2 |
|
zre |
|- ( x e. ZZ -> x e. RR ) |
3 |
|
nnre |
|- ( y e. NN -> y e. RR ) |
4 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
5 |
3 4
|
jca |
|- ( y e. NN -> ( y e. RR /\ y =/= 0 ) ) |
6 |
|
redivcl |
|- ( ( x e. RR /\ y e. RR /\ y =/= 0 ) -> ( x / y ) e. RR ) |
7 |
6
|
3expb |
|- ( ( x e. RR /\ ( y e. RR /\ y =/= 0 ) ) -> ( x / y ) e. RR ) |
8 |
2 5 7
|
syl2an |
|- ( ( x e. ZZ /\ y e. NN ) -> ( x / y ) e. RR ) |
9 |
|
eleq1 |
|- ( A = ( x / y ) -> ( A e. RR <-> ( x / y ) e. RR ) ) |
10 |
8 9
|
syl5ibrcom |
|- ( ( x e. ZZ /\ y e. NN ) -> ( A = ( x / y ) -> A e. RR ) ) |
11 |
10
|
rexlimivv |
|- ( E. x e. ZZ E. y e. NN A = ( x / y ) -> A e. RR ) |
12 |
1 11
|
sylbi |
|- ( A e. QQ -> A e. RR ) |