Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
|- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
2 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
3 |
2
|
ancli |
|- ( y e. NN -> ( y e. NN /\ y =/= 0 ) ) |
4 |
|
neeq1 |
|- ( A = ( x / y ) -> ( A =/= 0 <-> ( x / y ) =/= 0 ) ) |
5 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
6 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
7 |
5 6
|
anim12i |
|- ( ( x e. ZZ /\ y e. NN ) -> ( x e. CC /\ y e. CC ) ) |
8 |
|
divne0b |
|- ( ( x e. CC /\ y e. CC /\ y =/= 0 ) -> ( x =/= 0 <-> ( x / y ) =/= 0 ) ) |
9 |
8
|
3expa |
|- ( ( ( x e. CC /\ y e. CC ) /\ y =/= 0 ) -> ( x =/= 0 <-> ( x / y ) =/= 0 ) ) |
10 |
7 9
|
sylan |
|- ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) -> ( x =/= 0 <-> ( x / y ) =/= 0 ) ) |
11 |
10
|
bicomd |
|- ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) -> ( ( x / y ) =/= 0 <-> x =/= 0 ) ) |
12 |
4 11
|
sylan9bbr |
|- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) -> ( A =/= 0 <-> x =/= 0 ) ) |
13 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
14 |
|
zmulcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
15 |
13 14
|
sylan2 |
|- ( ( x e. ZZ /\ y e. NN ) -> ( x x. y ) e. ZZ ) |
16 |
15
|
adantr |
|- ( ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) -> ( x x. y ) e. ZZ ) |
17 |
|
msqznn |
|- ( ( x e. ZZ /\ x =/= 0 ) -> ( x x. x ) e. NN ) |
18 |
17
|
adantlr |
|- ( ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) -> ( x x. x ) e. NN ) |
19 |
16 18
|
jca |
|- ( ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) -> ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) ) |
20 |
19
|
adantlr |
|- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ x =/= 0 ) -> ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) ) |
21 |
20
|
adantlr |
|- ( ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) /\ x =/= 0 ) -> ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) ) |
22 |
|
oveq2 |
|- ( A = ( x / y ) -> ( 1 / A ) = ( 1 / ( x / y ) ) ) |
23 |
|
divid |
|- ( ( x e. CC /\ x =/= 0 ) -> ( x / x ) = 1 ) |
24 |
23
|
adantr |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x / x ) = 1 ) |
25 |
24
|
oveq1d |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( ( x / x ) / ( x / y ) ) = ( 1 / ( x / y ) ) ) |
26 |
|
simpll |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> x e. CC ) |
27 |
|
simpl |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x e. CC /\ x =/= 0 ) ) |
28 |
|
simpr |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( y e. CC /\ y =/= 0 ) ) |
29 |
|
divdivdiv |
|- ( ( ( x e. CC /\ ( x e. CC /\ x =/= 0 ) ) /\ ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) ) -> ( ( x / x ) / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
30 |
26 27 27 28 29
|
syl22anc |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( ( x / x ) / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
31 |
25 30
|
eqtr3d |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( 1 / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
32 |
31
|
an4s |
|- ( ( ( x e. CC /\ y e. CC ) /\ ( x =/= 0 /\ y =/= 0 ) ) -> ( 1 / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
33 |
7 32
|
sylan |
|- ( ( ( x e. ZZ /\ y e. NN ) /\ ( x =/= 0 /\ y =/= 0 ) ) -> ( 1 / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
34 |
33
|
anass1rs |
|- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ x =/= 0 ) -> ( 1 / ( x / y ) ) = ( ( x x. y ) / ( x x. x ) ) ) |
35 |
22 34
|
sylan9eqr |
|- ( ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ x =/= 0 ) /\ A = ( x / y ) ) -> ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) |
36 |
35
|
an32s |
|- ( ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) /\ x =/= 0 ) -> ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) |
37 |
21 36
|
jca |
|- ( ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) /\ x =/= 0 ) -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) |
38 |
37
|
ex |
|- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) -> ( x =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) |
39 |
12 38
|
sylbid |
|- ( ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) /\ A = ( x / y ) ) -> ( A =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) |
40 |
39
|
ex |
|- ( ( ( x e. ZZ /\ y e. NN ) /\ y =/= 0 ) -> ( A = ( x / y ) -> ( A =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) ) |
41 |
40
|
anasss |
|- ( ( x e. ZZ /\ ( y e. NN /\ y =/= 0 ) ) -> ( A = ( x / y ) -> ( A =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) ) |
42 |
3 41
|
sylan2 |
|- ( ( x e. ZZ /\ y e. NN ) -> ( A = ( x / y ) -> ( A =/= 0 -> ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) ) ) ) |
43 |
|
rspceov |
|- ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) -> E. z e. ZZ E. w e. NN ( 1 / A ) = ( z / w ) ) |
44 |
43
|
3expa |
|- ( ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) -> E. z e. ZZ E. w e. NN ( 1 / A ) = ( z / w ) ) |
45 |
|
elq |
|- ( ( 1 / A ) e. QQ <-> E. z e. ZZ E. w e. NN ( 1 / A ) = ( z / w ) ) |
46 |
44 45
|
sylibr |
|- ( ( ( ( x x. y ) e. ZZ /\ ( x x. x ) e. NN ) /\ ( 1 / A ) = ( ( x x. y ) / ( x x. x ) ) ) -> ( 1 / A ) e. QQ ) |
47 |
42 46
|
syl8 |
|- ( ( x e. ZZ /\ y e. NN ) -> ( A = ( x / y ) -> ( A =/= 0 -> ( 1 / A ) e. QQ ) ) ) |
48 |
47
|
rexlimivv |
|- ( E. x e. ZZ E. y e. NN A = ( x / y ) -> ( A =/= 0 -> ( 1 / A ) e. QQ ) ) |
49 |
1 48
|
sylbi |
|- ( A e. QQ -> ( A =/= 0 -> ( 1 / A ) e. QQ ) ) |
50 |
49
|
imp |
|- ( ( A e. QQ /\ A =/= 0 ) -> ( 1 / A ) e. QQ ) |