Metamath Proof Explorer


Theorem qred

Description: A rational number is a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis qred.1
|- ( ph -> A e. QQ )
Assertion qred
|- ( ph -> A e. RR )

Proof

Step Hyp Ref Expression
1 qred.1
 |-  ( ph -> A e. QQ )
2 qre
 |-  ( A e. QQ -> A e. RR )
3 1 2 syl
 |-  ( ph -> A e. RR )