Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
2 |
1
|
adantr |
|- ( ( M e. ZZ /\ N e. NN ) -> M e. CC ) |
3 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
4 |
3
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N e. CC ) |
5 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
6 |
5
|
adantl |
|- ( ( M e. ZZ /\ N e. NN ) -> N =/= 0 ) |
7 |
2 4 6
|
divcld |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. CC ) |
8 |
7
|
3adant3 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( M / N ) e. CC ) |
9 |
8
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( M / N ) e. CC ) |
10 |
|
zcn |
|- ( P e. ZZ -> P e. CC ) |
11 |
10
|
adantr |
|- ( ( P e. ZZ /\ Q e. NN ) -> P e. CC ) |
12 |
|
nncn |
|- ( Q e. NN -> Q e. CC ) |
13 |
12
|
adantl |
|- ( ( P e. ZZ /\ Q e. NN ) -> Q e. CC ) |
14 |
|
nnne0 |
|- ( Q e. NN -> Q =/= 0 ) |
15 |
14
|
adantl |
|- ( ( P e. ZZ /\ Q e. NN ) -> Q =/= 0 ) |
16 |
11 13 15
|
divcld |
|- ( ( P e. ZZ /\ Q e. NN ) -> ( P / Q ) e. CC ) |
17 |
16
|
3adant3 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( P / Q ) e. CC ) |
18 |
17
|
adantl |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( P / Q ) e. CC ) |
19 |
3
|
3ad2ant2 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N e. CC ) |
20 |
19
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> N e. CC ) |
21 |
5
|
3ad2ant2 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N =/= 0 ) |
22 |
21
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> N =/= 0 ) |
23 |
9 18 20 22
|
mulcand |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. ( M / N ) ) = ( N x. ( P / Q ) ) <-> ( M / N ) = ( P / Q ) ) ) |
24 |
2 4 6
|
divcan2d |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( M / N ) ) = M ) |
25 |
24
|
3adant3 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( N x. ( M / N ) ) = M ) |
26 |
25
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N x. ( M / N ) ) = M ) |
27 |
26
|
eqeq1d |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. ( M / N ) ) = ( N x. ( P / Q ) ) <-> M = ( N x. ( P / Q ) ) ) ) |
28 |
23 27
|
bitr3d |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M / N ) = ( P / Q ) <-> M = ( N x. ( P / Q ) ) ) ) |
29 |
1
|
3ad2ant1 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> M e. CC ) |
30 |
29
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> M e. CC ) |
31 |
|
mulcl |
|- ( ( N e. CC /\ ( P / Q ) e. CC ) -> ( N x. ( P / Q ) ) e. CC ) |
32 |
19 17 31
|
syl2an |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N x. ( P / Q ) ) e. CC ) |
33 |
12
|
3ad2ant2 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q e. CC ) |
34 |
33
|
adantl |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> Q e. CC ) |
35 |
14
|
3ad2ant2 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q =/= 0 ) |
36 |
35
|
adantl |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> Q =/= 0 ) |
37 |
30 32 34 36
|
mulcan2d |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. Q ) = ( ( N x. ( P / Q ) ) x. Q ) <-> M = ( N x. ( P / Q ) ) ) ) |
38 |
20 18 34
|
mulassd |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. ( P / Q ) ) x. Q ) = ( N x. ( ( P / Q ) x. Q ) ) ) |
39 |
11 13 15
|
divcan1d |
|- ( ( P e. ZZ /\ Q e. NN ) -> ( ( P / Q ) x. Q ) = P ) |
40 |
39
|
3adant3 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( ( P / Q ) x. Q ) = P ) |
41 |
40
|
adantl |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( P / Q ) x. Q ) = P ) |
42 |
41
|
oveq2d |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N x. ( ( P / Q ) x. Q ) ) = ( N x. P ) ) |
43 |
38 42
|
eqtrd |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. ( P / Q ) ) x. Q ) = ( N x. P ) ) |
44 |
43
|
eqeq2d |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. Q ) = ( ( N x. ( P / Q ) ) x. Q ) <-> ( M x. Q ) = ( N x. P ) ) ) |
45 |
37 44
|
bitr3d |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( M = ( N x. ( P / Q ) ) <-> ( M x. Q ) = ( N x. P ) ) ) |
46 |
28 45
|
bitrd |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M / N ) = ( P / Q ) <-> ( M x. Q ) = ( N x. P ) ) ) |
47 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
48 |
47
|
3ad2ant2 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N e. ZZ ) |
49 |
|
simp2 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q e. NN ) |
50 |
48 49
|
anim12i |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N e. ZZ /\ Q e. NN ) ) |
51 |
50
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N e. ZZ /\ Q e. NN ) ) |
52 |
48
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> N e. ZZ ) |
53 |
|
simpl1 |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> M e. ZZ ) |
54 |
|
nnz |
|- ( Q e. NN -> Q e. ZZ ) |
55 |
54
|
3ad2ant2 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q e. ZZ ) |
56 |
55
|
adantl |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> Q e. ZZ ) |
57 |
52 53 56
|
3jca |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N e. ZZ /\ M e. ZZ /\ Q e. ZZ ) ) |
58 |
57
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N e. ZZ /\ M e. ZZ /\ Q e. ZZ ) ) |
59 |
|
simp1 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> P e. ZZ ) |
60 |
|
dvdsmul1 |
|- ( ( N e. ZZ /\ P e. ZZ ) -> N || ( N x. P ) ) |
61 |
48 59 60
|
syl2an |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> N || ( N x. P ) ) |
62 |
61
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N || ( N x. P ) ) |
63 |
|
simpr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( M x. Q ) = ( N x. P ) ) |
64 |
62 63
|
breqtrrd |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N || ( M x. Q ) ) |
65 |
|
gcdcom |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) |
66 |
47 65
|
sylan |
|- ( ( N e. NN /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) |
67 |
66
|
ancoms |
|- ( ( M e. ZZ /\ N e. NN ) -> ( N gcd M ) = ( M gcd N ) ) |
68 |
67
|
3adant3 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( N gcd M ) = ( M gcd N ) ) |
69 |
|
simp3 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( M gcd N ) = 1 ) |
70 |
68 69
|
eqtrd |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( N gcd M ) = 1 ) |
71 |
70
|
ad2antrr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N gcd M ) = 1 ) |
72 |
64 71
|
jca |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N || ( M x. Q ) /\ ( N gcd M ) = 1 ) ) |
73 |
|
coprmdvds |
|- ( ( N e. ZZ /\ M e. ZZ /\ Q e. ZZ ) -> ( ( N || ( M x. Q ) /\ ( N gcd M ) = 1 ) -> N || Q ) ) |
74 |
58 72 73
|
sylc |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N || Q ) |
75 |
|
dvdsle |
|- ( ( N e. ZZ /\ Q e. NN ) -> ( N || Q -> N <_ Q ) ) |
76 |
51 74 75
|
sylc |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N <_ Q ) |
77 |
|
simp2 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N e. NN ) |
78 |
55 77
|
anim12i |
|- ( ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) /\ ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) ) -> ( Q e. ZZ /\ N e. NN ) ) |
79 |
78
|
ancoms |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( Q e. ZZ /\ N e. NN ) ) |
80 |
79
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( Q e. ZZ /\ N e. NN ) ) |
81 |
|
simpr1 |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> P e. ZZ ) |
82 |
56 81 52
|
3jca |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( Q e. ZZ /\ P e. ZZ /\ N e. ZZ ) ) |
83 |
82
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( Q e. ZZ /\ P e. ZZ /\ N e. ZZ ) ) |
84 |
|
simp1 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> M e. ZZ ) |
85 |
|
dvdsmul2 |
|- ( ( M e. ZZ /\ Q e. ZZ ) -> Q || ( M x. Q ) ) |
86 |
84 55 85
|
syl2an |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> Q || ( M x. Q ) ) |
87 |
86
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q || ( M x. Q ) ) |
88 |
10
|
3ad2ant1 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> P e. CC ) |
89 |
|
mulcom |
|- ( ( N e. CC /\ P e. CC ) -> ( N x. P ) = ( P x. N ) ) |
90 |
19 88 89
|
syl2an |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( N x. P ) = ( P x. N ) ) |
91 |
90
|
adantr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N x. P ) = ( P x. N ) ) |
92 |
63 91
|
eqtrd |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( M x. Q ) = ( P x. N ) ) |
93 |
87 92
|
breqtrd |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q || ( P x. N ) ) |
94 |
|
gcdcom |
|- ( ( Q e. ZZ /\ P e. ZZ ) -> ( Q gcd P ) = ( P gcd Q ) ) |
95 |
54 94
|
sylan |
|- ( ( Q e. NN /\ P e. ZZ ) -> ( Q gcd P ) = ( P gcd Q ) ) |
96 |
95
|
ancoms |
|- ( ( P e. ZZ /\ Q e. NN ) -> ( Q gcd P ) = ( P gcd Q ) ) |
97 |
96
|
3adant3 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( Q gcd P ) = ( P gcd Q ) ) |
98 |
|
simp3 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( P gcd Q ) = 1 ) |
99 |
97 98
|
eqtrd |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> ( Q gcd P ) = 1 ) |
100 |
99
|
ad2antlr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( Q gcd P ) = 1 ) |
101 |
93 100
|
jca |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( Q || ( P x. N ) /\ ( Q gcd P ) = 1 ) ) |
102 |
|
coprmdvds |
|- ( ( Q e. ZZ /\ P e. ZZ /\ N e. ZZ ) -> ( ( Q || ( P x. N ) /\ ( Q gcd P ) = 1 ) -> Q || N ) ) |
103 |
83 101 102
|
sylc |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q || N ) |
104 |
|
dvdsle |
|- ( ( Q e. ZZ /\ N e. NN ) -> ( Q || N -> Q <_ N ) ) |
105 |
80 103 104
|
sylc |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q <_ N ) |
106 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
107 |
106
|
3ad2ant2 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> N e. RR ) |
108 |
107
|
ad2antrr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N e. RR ) |
109 |
|
nnre |
|- ( Q e. NN -> Q e. RR ) |
110 |
109
|
3ad2ant2 |
|- ( ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) -> Q e. RR ) |
111 |
110
|
ad2antlr |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> Q e. RR ) |
112 |
108 111
|
letri3d |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N = Q <-> ( N <_ Q /\ Q <_ N ) ) ) |
113 |
76 105 112
|
mpbir2and |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> N = Q ) |
114 |
|
oveq2 |
|- ( N = Q -> ( M x. N ) = ( M x. Q ) ) |
115 |
114
|
eqeq1d |
|- ( N = Q -> ( ( M x. N ) = ( N x. P ) <-> ( M x. Q ) = ( N x. P ) ) ) |
116 |
115
|
anbi2d |
|- ( N = Q -> ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. N ) = ( N x. P ) ) <-> ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) ) ) |
117 |
|
mulcom |
|- ( ( M e. CC /\ N e. CC ) -> ( M x. N ) = ( N x. M ) ) |
118 |
1 3 117
|
syl2an |
|- ( ( M e. ZZ /\ N e. NN ) -> ( M x. N ) = ( N x. M ) ) |
119 |
118
|
3adant3 |
|- ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( M x. N ) = ( N x. M ) ) |
120 |
119
|
adantr |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( M x. N ) = ( N x. M ) ) |
121 |
120
|
eqeq1d |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. N ) = ( N x. P ) <-> ( N x. M ) = ( N x. P ) ) ) |
122 |
88
|
adantl |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> P e. CC ) |
123 |
30 122 20 22
|
mulcand |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( N x. M ) = ( N x. P ) <-> M = P ) ) |
124 |
121 123
|
bitrd |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. N ) = ( N x. P ) <-> M = P ) ) |
125 |
124
|
biimpa |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. N ) = ( N x. P ) ) -> M = P ) |
126 |
116 125
|
syl6bir |
|- ( N = Q -> ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> M = P ) ) |
127 |
126
|
com12 |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N = Q -> M = P ) ) |
128 |
127
|
ancrd |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( N = Q -> ( M = P /\ N = Q ) ) ) |
129 |
113 128
|
mpd |
|- ( ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) /\ ( M x. Q ) = ( N x. P ) ) -> ( M = P /\ N = Q ) ) |
130 |
129
|
ex |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M x. Q ) = ( N x. P ) -> ( M = P /\ N = Q ) ) ) |
131 |
46 130
|
sylbid |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) ) -> ( ( M / N ) = ( P / Q ) -> ( M = P /\ N = Q ) ) ) |
132 |
131
|
3impia |
|- ( ( ( M e. ZZ /\ N e. NN /\ ( M gcd N ) = 1 ) /\ ( P e. ZZ /\ Q e. NN /\ ( P gcd Q ) = 1 ) /\ ( M / N ) = ( P / Q ) ) -> ( M = P /\ N = Q ) ) |