Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
|- O = ( oppR ` R ) |
2 |
|
qsdrng.q |
|- Q = ( R /s ( R ~QG M ) ) |
3 |
|
qsdrng.r |
|- ( ph -> R e. NzRing ) |
4 |
|
qsdrng.2 |
|- ( ph -> M e. ( 2Ideal ` R ) ) |
5 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
6 |
3 5
|
syl |
|- ( ph -> R e. Ring ) |
7 |
6
|
adantr |
|- ( ( ph /\ Q e. DivRing ) -> R e. Ring ) |
8 |
4
|
2idllidld |
|- ( ph -> M e. ( LIdeal ` R ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( LIdeal ` R ) ) |
10 |
|
drngnzr |
|- ( Q e. DivRing -> Q e. NzRing ) |
11 |
10
|
ad2antlr |
|- ( ( ( ph /\ Q e. DivRing ) /\ M = ( Base ` R ) ) -> Q e. NzRing ) |
12 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
13 |
2 12
|
qusring |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
14 |
6 4 13
|
syl2anc |
|- ( ph -> Q e. Ring ) |
15 |
14
|
adantr |
|- ( ( ph /\ M = ( Base ` R ) ) -> Q e. Ring ) |
16 |
|
oveq2 |
|- ( M = ( Base ` R ) -> ( R ~QG M ) = ( R ~QG ( Base ` R ) ) ) |
17 |
16
|
oveq2d |
|- ( M = ( Base ` R ) -> ( R /s ( R ~QG M ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) ) |
18 |
2 17
|
eqtrid |
|- ( M = ( Base ` R ) -> Q = ( R /s ( R ~QG ( Base ` R ) ) ) ) |
19 |
18
|
fveq2d |
|- ( M = ( Base ` R ) -> ( Base ` Q ) = ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) ) |
20 |
6
|
ringgrpd |
|- ( ph -> R e. Grp ) |
21 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
22 |
|
eqid |
|- ( R /s ( R ~QG ( Base ` R ) ) ) = ( R /s ( R ~QG ( Base ` R ) ) ) |
23 |
21 22
|
qustriv |
|- ( R e. Grp -> ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) = { ( Base ` R ) } ) |
24 |
20 23
|
syl |
|- ( ph -> ( Base ` ( R /s ( R ~QG ( Base ` R ) ) ) ) = { ( Base ` R ) } ) |
25 |
19 24
|
sylan9eqr |
|- ( ( ph /\ M = ( Base ` R ) ) -> ( Base ` Q ) = { ( Base ` R ) } ) |
26 |
25
|
fveq2d |
|- ( ( ph /\ M = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) = ( # ` { ( Base ` R ) } ) ) |
27 |
|
fvex |
|- ( Base ` R ) e. _V |
28 |
|
hashsng |
|- ( ( Base ` R ) e. _V -> ( # ` { ( Base ` R ) } ) = 1 ) |
29 |
27 28
|
ax-mp |
|- ( # ` { ( Base ` R ) } ) = 1 |
30 |
26 29
|
eqtrdi |
|- ( ( ph /\ M = ( Base ` R ) ) -> ( # ` ( Base ` Q ) ) = 1 ) |
31 |
|
0ringnnzr |
|- ( Q e. Ring -> ( ( # ` ( Base ` Q ) ) = 1 <-> -. Q e. NzRing ) ) |
32 |
31
|
biimpa |
|- ( ( Q e. Ring /\ ( # ` ( Base ` Q ) ) = 1 ) -> -. Q e. NzRing ) |
33 |
15 30 32
|
syl2anc |
|- ( ( ph /\ M = ( Base ` R ) ) -> -. Q e. NzRing ) |
34 |
33
|
adantlr |
|- ( ( ( ph /\ Q e. DivRing ) /\ M = ( Base ` R ) ) -> -. Q e. NzRing ) |
35 |
11 34
|
pm2.65da |
|- ( ( ph /\ Q e. DivRing ) -> -. M = ( Base ` R ) ) |
36 |
35
|
neqned |
|- ( ( ph /\ Q e. DivRing ) -> M =/= ( Base ` R ) ) |
37 |
|
simplr |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> M C_ j ) |
38 |
|
simpr |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> -. j = M ) |
39 |
38
|
neqned |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> j =/= M ) |
40 |
39
|
necomd |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> M =/= j ) |
41 |
|
pssdifn0 |
|- ( ( M C_ j /\ M =/= j ) -> ( j \ M ) =/= (/) ) |
42 |
37 40 41
|
syl2anc |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> ( j \ M ) =/= (/) ) |
43 |
|
n0 |
|- ( ( j \ M ) =/= (/) <-> E. x x e. ( j \ M ) ) |
44 |
42 43
|
sylib |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> E. x x e. ( j \ M ) ) |
45 |
3
|
ad5antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> R e. NzRing ) |
46 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M e. ( 2Ideal ` R ) ) |
47 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> Q e. DivRing ) |
48 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j e. ( LIdeal ` R ) ) |
49 |
37
|
adantr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M C_ j ) |
50 |
|
simpr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> x e. ( j \ M ) ) |
51 |
1 2 45 46 21 47 48 49 50
|
qsdrnglem2 |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j = ( Base ` R ) ) |
52 |
44 51
|
exlimddv |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) /\ -. j = M ) -> j = ( Base ` R ) ) |
53 |
52
|
ex |
|- ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( -. j = M -> j = ( Base ` R ) ) ) |
54 |
53
|
orrd |
|- ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) /\ M C_ j ) -> ( j = M \/ j = ( Base ` R ) ) ) |
55 |
54
|
ex |
|- ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` R ) ) -> ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
56 |
55
|
ralrimiva |
|- ( ( ph /\ Q e. DivRing ) -> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
57 |
21
|
ismxidl |
|- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) |
58 |
57
|
biimpar |
|- ( ( R e. Ring /\ ( M e. ( LIdeal ` R ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` R ) ) |
59 |
7 9 36 56 58
|
syl13anc |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` R ) ) |
60 |
1
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
61 |
6 60
|
syl |
|- ( ph -> O e. Ring ) |
62 |
61
|
adantr |
|- ( ( ph /\ Q e. DivRing ) -> O e. Ring ) |
63 |
4
|
adantr |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( 2Ideal ` R ) ) |
64 |
63 1
|
2idlridld |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( LIdeal ` O ) ) |
65 |
|
simplr |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> M C_ j ) |
66 |
|
simpr |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> -. j = M ) |
67 |
66
|
neqned |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> j =/= M ) |
68 |
67
|
necomd |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> M =/= j ) |
69 |
65 68 41
|
syl2anc |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> ( j \ M ) =/= (/) ) |
70 |
69 43
|
sylib |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> E. x x e. ( j \ M ) ) |
71 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
72 |
|
eqid |
|- ( O /s ( O ~QG M ) ) = ( O /s ( O ~QG M ) ) |
73 |
1
|
opprnzr |
|- ( R e. NzRing -> O e. NzRing ) |
74 |
3 73
|
syl |
|- ( ph -> O e. NzRing ) |
75 |
74
|
ad5antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> O e. NzRing ) |
76 |
1 6
|
oppr2idl |
|- ( ph -> ( 2Ideal ` R ) = ( 2Ideal ` O ) ) |
77 |
4 76
|
eleqtrd |
|- ( ph -> M e. ( 2Ideal ` O ) ) |
78 |
77
|
ad5antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M e. ( 2Ideal ` O ) ) |
79 |
1 21
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
80 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
81 |
80
|
opprdrng |
|- ( Q e. DivRing <-> ( oppR ` Q ) e. DivRing ) |
82 |
21 1 2 6 4
|
opprqusdrng |
|- ( ph -> ( ( oppR ` Q ) e. DivRing <-> ( O /s ( O ~QG M ) ) e. DivRing ) ) |
83 |
82
|
biimpa |
|- ( ( ph /\ ( oppR ` Q ) e. DivRing ) -> ( O /s ( O ~QG M ) ) e. DivRing ) |
84 |
81 83
|
sylan2b |
|- ( ( ph /\ Q e. DivRing ) -> ( O /s ( O ~QG M ) ) e. DivRing ) |
85 |
84
|
ad4antr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> ( O /s ( O ~QG M ) ) e. DivRing ) |
86 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j e. ( LIdeal ` O ) ) |
87 |
65
|
adantr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> M C_ j ) |
88 |
|
simpr |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> x e. ( j \ M ) ) |
89 |
71 72 75 78 79 85 86 87 88
|
qsdrnglem2 |
|- ( ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) /\ x e. ( j \ M ) ) -> j = ( Base ` R ) ) |
90 |
70 89
|
exlimddv |
|- ( ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) /\ -. j = M ) -> j = ( Base ` R ) ) |
91 |
90
|
ex |
|- ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) -> ( -. j = M -> j = ( Base ` R ) ) ) |
92 |
91
|
orrd |
|- ( ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) /\ M C_ j ) -> ( j = M \/ j = ( Base ` R ) ) ) |
93 |
92
|
ex |
|- ( ( ( ph /\ Q e. DivRing ) /\ j e. ( LIdeal ` O ) ) -> ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
94 |
93
|
ralrimiva |
|- ( ( ph /\ Q e. DivRing ) -> A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) |
95 |
79
|
ismxidl |
|- ( O e. Ring -> ( M e. ( MaxIdeal ` O ) <-> ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) ) |
96 |
95
|
biimpar |
|- ( ( O e. Ring /\ ( M e. ( LIdeal ` O ) /\ M =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( M C_ j -> ( j = M \/ j = ( Base ` R ) ) ) ) ) -> M e. ( MaxIdeal ` O ) ) |
97 |
62 64 36 94 96
|
syl13anc |
|- ( ( ph /\ Q e. DivRing ) -> M e. ( MaxIdeal ` O ) ) |
98 |
59 97
|
jca |
|- ( ( ph /\ Q e. DivRing ) -> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) |
99 |
3
|
adantr |
|- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> R e. NzRing ) |
100 |
|
simprl |
|- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` R ) ) |
101 |
|
simprr |
|- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> M e. ( MaxIdeal ` O ) ) |
102 |
1 2 99 100 101
|
qsdrngi |
|- ( ( ph /\ ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) -> Q e. DivRing ) |
103 |
98 102
|
impbida |
|- ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` O ) ) ) ) |