Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
|- O = ( oppR ` R ) |
2 |
|
qsdrng.q |
|- Q = ( R /s ( R ~QG M ) ) |
3 |
|
qsdrng.r |
|- ( ph -> R e. NzRing ) |
4 |
|
qsdrngi.1 |
|- ( ph -> M e. ( MaxIdeal ` R ) ) |
5 |
|
qsdrngi.2 |
|- ( ph -> M e. ( MaxIdeal ` O ) ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
8 |
3 7
|
syl |
|- ( ph -> R e. Ring ) |
9 |
6
|
mxidlidl |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
10 |
8 4 9
|
syl2anc |
|- ( ph -> M e. ( LIdeal ` R ) ) |
11 |
1
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
12 |
8 11
|
syl |
|- ( ph -> O e. Ring ) |
13 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
14 |
13
|
mxidlidl |
|- ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) |
15 |
12 5 14
|
syl2anc |
|- ( ph -> M e. ( LIdeal ` O ) ) |
16 |
10 15
|
elind |
|- ( ph -> M e. ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) ) |
17 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
18 |
|
eqid |
|- ( LIdeal ` O ) = ( LIdeal ` O ) |
19 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
20 |
17 1 18 19
|
2idlval |
|- ( 2Ideal ` R ) = ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) |
21 |
16 20
|
eleqtrrdi |
|- ( ph -> M e. ( 2Ideal ` R ) ) |
22 |
6
|
mxidlnr |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= ( Base ` R ) ) |
23 |
8 4 22
|
syl2anc |
|- ( ph -> M =/= ( Base ` R ) ) |
24 |
2 6 8 3 21 23
|
qsnzr |
|- ( ph -> Q e. NzRing ) |
25 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
26 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
27 |
25 26
|
nzrnz |
|- ( Q e. NzRing -> ( 1r ` Q ) =/= ( 0g ` Q ) ) |
28 |
24 27
|
syl |
|- ( ph -> ( 1r ` Q ) =/= ( 0g ` Q ) ) |
29 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
30 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
31 |
|
eqid |
|- ( Unit ` Q ) = ( Unit ` Q ) |
32 |
2 19
|
qusring |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> Q e. Ring ) |
33 |
8 21 32
|
syl2anc |
|- ( ph -> Q e. Ring ) |
34 |
33
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) -> Q e. Ring ) |
35 |
34
|
adantr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> Q e. Ring ) |
36 |
|
eldifi |
|- ( u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) -> u e. ( Base ` Q ) ) |
37 |
36
|
adantl |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> u e. ( Base ` Q ) ) |
38 |
37
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> u e. ( Base ` Q ) ) |
39 |
|
ovex |
|- ( R ~QG M ) e. _V |
40 |
39
|
ecelqsi |
|- ( r e. ( Base ` R ) -> [ r ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
41 |
40
|
ad4antlr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ r ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
42 |
2
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG M ) ) ) |
43 |
|
eqidd |
|- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
44 |
|
ovexd |
|- ( ph -> ( R ~QG M ) e. _V ) |
45 |
42 43 44 3
|
qusbas |
|- ( ph -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
47 |
46
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
48 |
41 47
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ r ] ( R ~QG M ) e. ( Base ` Q ) ) |
49 |
39
|
ecelqsi |
|- ( s e. ( Base ` R ) -> [ s ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
50 |
49
|
ad2antlr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ s ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
51 |
50 47
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ s ] ( R ~QG M ) e. ( Base ` Q ) ) |
52 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> v = [ r ] ( R ~QG M ) ) |
53 |
|
simp-9r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> u = [ x ] ( R ~QG M ) ) |
54 |
53
|
eqcomd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ x ] ( R ~QG M ) = u ) |
55 |
52 54
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( [ r ] ( R ~QG M ) ( .r ` Q ) u ) ) |
56 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
57 |
55 56
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( [ r ] ( R ~QG M ) ( .r ` Q ) u ) = ( 1r ` Q ) ) |
58 |
|
eqid |
|- ( oppR ` Q ) = ( oppR ` Q ) |
59 |
|
eqid |
|- ( .r ` ( oppR ` Q ) ) = ( .r ` ( oppR ` Q ) ) |
60 |
29 30 58 59
|
opprmul |
|- ( [ s ] ( R ~QG M ) ( .r ` ( oppR ` Q ) ) u ) = ( u ( .r ` Q ) [ s ] ( R ~QG M ) ) |
61 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
62 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> R e. Ring ) |
63 |
62
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> R e. Ring ) |
64 |
21
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( 2Ideal ` R ) ) |
65 |
64
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> M e. ( 2Ideal ` R ) ) |
66 |
6 1 2 63 65 29 51 38
|
opprqusmulr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` ( oppR ` Q ) ) u ) = ( [ s ] ( R ~QG M ) ( .r ` ( O /s ( O ~QG M ) ) ) u ) ) |
67 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> w = [ s ] ( R ~QG M ) ) |
68 |
6 17
|
lidlss |
|- ( M e. ( LIdeal ` R ) -> M C_ ( Base ` R ) ) |
69 |
10 68
|
syl |
|- ( ph -> M C_ ( Base ` R ) ) |
70 |
1 6
|
oppreqg |
|- ( ( R e. Ring /\ M C_ ( Base ` R ) ) -> ( R ~QG M ) = ( O ~QG M ) ) |
71 |
8 69 70
|
syl2anc |
|- ( ph -> ( R ~QG M ) = ( O ~QG M ) ) |
72 |
71
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) -> ( R ~QG M ) = ( O ~QG M ) ) |
73 |
72
|
adantr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( R ~QG M ) = ( O ~QG M ) ) |
74 |
73
|
eceq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ x ] ( R ~QG M ) = [ x ] ( O ~QG M ) ) |
75 |
53 74
|
eqtr2d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ x ] ( O ~QG M ) = u ) |
76 |
67 75
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( [ s ] ( R ~QG M ) ( .r ` ( O /s ( O ~QG M ) ) ) u ) ) |
77 |
66 76
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` ( oppR ` Q ) ) u ) = ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) ) |
78 |
58 25
|
oppr1 |
|- ( 1r ` Q ) = ( 1r ` ( oppR ` Q ) ) |
79 |
6 1 2 8 21
|
opprqus1r |
|- ( ph -> ( 1r ` ( oppR ` Q ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
80 |
78 79
|
eqtrid |
|- ( ph -> ( 1r ` Q ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
81 |
80
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) -> ( 1r ` Q ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
82 |
81
|
adantr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( 1r ` Q ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
83 |
61 77 82
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` ( oppR ` Q ) ) u ) = ( 1r ` Q ) ) |
84 |
60 83
|
eqtr3id |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( u ( .r ` Q ) [ s ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
85 |
29 26 25 30 31 35 38 48 51 57 84
|
ringinveu |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> [ s ] ( R ~QG M ) = [ r ] ( R ~QG M ) ) |
86 |
85 67 52
|
3eqtr4rd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> v = w ) |
87 |
86
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( u ( .r ` Q ) v ) = ( u ( .r ` Q ) w ) ) |
88 |
67
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( u ( .r ` Q ) w ) = ( u ( .r ` Q ) [ s ] ( R ~QG M ) ) ) |
89 |
87 88 84
|
3eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) /\ s e. ( Base ` R ) ) /\ w = [ s ] ( R ~QG M ) ) -> ( u ( .r ` Q ) v ) = ( 1r ` Q ) ) |
90 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) |
91 |
71
|
qseq2d |
|- ( ph -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( ( Base ` R ) /. ( O ~QG M ) ) ) |
92 |
91
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( ( Base ` R ) /. ( O ~QG M ) ) ) |
93 |
|
eqidd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( O /s ( O ~QG M ) ) = ( O /s ( O ~QG M ) ) ) |
94 |
1 6
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
95 |
94
|
a1i |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( Base ` R ) = ( Base ` O ) ) |
96 |
|
ovexd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( O ~QG M ) e. _V ) |
97 |
1
|
fvexi |
|- O e. _V |
98 |
97
|
a1i |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> O e. _V ) |
99 |
93 95 96 98
|
qusbas |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( ( Base ` R ) /. ( O ~QG M ) ) = ( Base ` ( O /s ( O ~QG M ) ) ) ) |
100 |
92 99
|
eqtr2d |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( Base ` ( O /s ( O ~QG M ) ) ) = ( ( Base ` R ) /. ( R ~QG M ) ) ) |
101 |
90 100
|
eleqtrd |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> w e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
102 |
|
elqsi |
|- ( w e. ( ( Base ` R ) /. ( R ~QG M ) ) -> E. s e. ( Base ` R ) w = [ s ] ( R ~QG M ) ) |
103 |
101 102
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> E. s e. ( Base ` R ) w = [ s ] ( R ~QG M ) ) |
104 |
89 103
|
r19.29a |
|- ( ( ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) /\ r e. ( Base ` R ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( u ( .r ` Q ) v ) = ( 1r ` Q ) ) |
105 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> v e. ( Base ` Q ) ) |
106 |
46
|
ad6antr |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
107 |
105 106
|
eleqtrrd |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> v e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
108 |
|
elqsi |
|- ( v e. ( ( Base ` R ) /. ( R ~QG M ) ) -> E. r e. ( Base ` R ) v = [ r ] ( R ~QG M ) ) |
109 |
107 108
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> E. r e. ( Base ` R ) v = [ r ] ( R ~QG M ) ) |
110 |
104 109
|
r19.29a |
|- ( ( ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) /\ w e. ( Base ` ( O /s ( O ~QG M ) ) ) ) /\ ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) -> ( u ( .r ` Q ) v ) = ( 1r ` Q ) ) |
111 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
112 |
|
eqid |
|- ( O /s ( O ~QG M ) ) = ( O /s ( O ~QG M ) ) |
113 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> R e. NzRing ) |
114 |
1
|
opprnzr |
|- ( R e. NzRing -> O e. NzRing ) |
115 |
113 114
|
syl |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> O e. NzRing ) |
116 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` O ) ) |
117 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` R ) ) |
118 |
1 62 117
|
opprmxidlabs |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> M e. ( MaxIdeal ` ( oppR ` O ) ) ) |
119 |
|
simplr |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> x e. ( Base ` R ) ) |
120 |
94
|
a1i |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> ( Base ` R ) = ( Base ` O ) ) |
121 |
119 120
|
eleqtrd |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> x e. ( Base ` O ) ) |
122 |
|
simplr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> u = [ x ] ( R ~QG M ) ) |
123 |
8
|
ringgrpd |
|- ( ph -> R e. Grp ) |
124 |
123
|
ad4antr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> R e. Grp ) |
125 |
|
lidlnsg |
|- ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( NrmSGrp ` R ) ) |
126 |
8 10 125
|
syl2anc |
|- ( ph -> M e. ( NrmSGrp ` R ) ) |
127 |
|
nsgsubg |
|- ( M e. ( NrmSGrp ` R ) -> M e. ( SubGrp ` R ) ) |
128 |
126 127
|
syl |
|- ( ph -> M e. ( SubGrp ` R ) ) |
129 |
128
|
ad4antr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> M e. ( SubGrp ` R ) ) |
130 |
|
simpr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> x e. M ) |
131 |
|
eqid |
|- ( R ~QG M ) = ( R ~QG M ) |
132 |
131
|
eqg0el |
|- ( ( R e. Grp /\ M e. ( SubGrp ` R ) ) -> ( [ x ] ( R ~QG M ) = M <-> x e. M ) ) |
133 |
132
|
biimpar |
|- ( ( ( R e. Grp /\ M e. ( SubGrp ` R ) ) /\ x e. M ) -> [ x ] ( R ~QG M ) = M ) |
134 |
124 129 130 133
|
syl21anc |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> [ x ] ( R ~QG M ) = M ) |
135 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
136 |
6 131 135
|
eqgid |
|- ( M e. ( SubGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG M ) = M ) |
137 |
129 136
|
syl |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> [ ( 0g ` R ) ] ( R ~QG M ) = M ) |
138 |
134 137
|
eqtr4d |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> [ x ] ( R ~QG M ) = [ ( 0g ` R ) ] ( R ~QG M ) ) |
139 |
2 135
|
qus0 |
|- ( M e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG M ) = ( 0g ` Q ) ) |
140 |
126 139
|
syl |
|- ( ph -> [ ( 0g ` R ) ] ( R ~QG M ) = ( 0g ` Q ) ) |
141 |
140
|
ad4antr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> [ ( 0g ` R ) ] ( R ~QG M ) = ( 0g ` Q ) ) |
142 |
122 138 141
|
3eqtrd |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> u = ( 0g ` Q ) ) |
143 |
|
eldifsnneq |
|- ( u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) -> -. u = ( 0g ` Q ) ) |
144 |
143
|
ad4antlr |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ x e. M ) -> -. u = ( 0g ` Q ) ) |
145 |
142 144
|
pm2.65da |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> -. x e. M ) |
146 |
111 112 115 116 118 121 145
|
qsdrngilem |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> E. w e. ( Base ` ( O /s ( O ~QG M ) ) ) ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
147 |
146
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> E. w e. ( Base ` ( O /s ( O ~QG M ) ) ) ( w ( .r ` ( O /s ( O ~QG M ) ) ) [ x ] ( O ~QG M ) ) = ( 1r ` ( O /s ( O ~QG M ) ) ) ) |
148 |
110 147
|
r19.29a |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( u ( .r ` Q ) v ) = ( 1r ` Q ) ) |
149 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> u = [ x ] ( R ~QG M ) ) |
150 |
149
|
oveq2d |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( v ( .r ` Q ) u ) = ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) ) |
151 |
|
simpr |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
152 |
150 151
|
eqtrd |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) |
153 |
148 152
|
jca |
|- ( ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ v e. ( Base ` Q ) ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) -> ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
154 |
153
|
anasss |
|- ( ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) /\ ( v e. ( Base ` Q ) /\ ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) ) -> ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
155 |
1 2 113 117 116 119 145
|
qsdrngilem |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> E. v e. ( Base ` Q ) ( v ( .r ` Q ) [ x ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
156 |
154 155
|
reximddv |
|- ( ( ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) /\ x e. ( Base ` R ) ) /\ u = [ x ] ( R ~QG M ) ) -> E. v e. ( Base ` Q ) ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
157 |
37 46
|
eleqtrrd |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> u e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
158 |
|
elqsi |
|- ( u e. ( ( Base ` R ) /. ( R ~QG M ) ) -> E. x e. ( Base ` R ) u = [ x ] ( R ~QG M ) ) |
159 |
157 158
|
syl |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> E. x e. ( Base ` R ) u = [ x ] ( R ~QG M ) ) |
160 |
156 159
|
r19.29a |
|- ( ( ph /\ u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) ) -> E. v e. ( Base ` Q ) ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
161 |
160
|
ralrimiva |
|- ( ph -> A. u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) E. v e. ( Base ` Q ) ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) |
162 |
29 26 25 30 31 33
|
isdrng4 |
|- ( ph -> ( Q e. DivRing <-> ( ( 1r ` Q ) =/= ( 0g ` Q ) /\ A. u e. ( ( Base ` Q ) \ { ( 0g ` Q ) } ) E. v e. ( Base ` Q ) ( ( u ( .r ` Q ) v ) = ( 1r ` Q ) /\ ( v ( .r ` Q ) u ) = ( 1r ` Q ) ) ) ) ) |
163 |
28 161 162
|
mpbir2and |
|- ( ph -> Q e. DivRing ) |