Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
|- O = ( oppR ` R ) |
2 |
|
qsdrng.q |
|- Q = ( R /s ( R ~QG M ) ) |
3 |
|
qsdrng.r |
|- ( ph -> R e. NzRing ) |
4 |
|
qsdrngi.1 |
|- ( ph -> M e. ( MaxIdeal ` R ) ) |
5 |
|
qsdrngi.2 |
|- ( ph -> M e. ( MaxIdeal ` O ) ) |
6 |
|
qsdrngilem.1 |
|- ( ph -> X e. ( Base ` R ) ) |
7 |
|
qsdrngilem.2 |
|- ( ph -> -. X e. M ) |
8 |
|
simpllr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> r e. ( Base ` R ) ) |
9 |
|
ovex |
|- ( R ~QG M ) e. _V |
10 |
9
|
ecelqsi |
|- ( r e. ( Base ` R ) -> [ r ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
11 |
8 10
|
syl |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> [ r ] ( R ~QG M ) e. ( ( Base ` R ) /. ( R ~QG M ) ) ) |
12 |
2
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG M ) ) ) |
13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
14 |
13
|
a1i |
|- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
15 |
|
ovexd |
|- ( ph -> ( R ~QG M ) e. _V ) |
16 |
12 14 15 3
|
qusbas |
|- ( ph -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
17 |
16
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( Base ` R ) /. ( R ~QG M ) ) = ( Base ` Q ) ) |
18 |
11 17
|
eleqtrd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> [ r ] ( R ~QG M ) e. ( Base ` Q ) ) |
19 |
|
oveq1 |
|- ( v = [ r ] ( R ~QG M ) -> ( v ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( [ r ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) ) |
20 |
19
|
eqeq1d |
|- ( v = [ r ] ( R ~QG M ) -> ( ( v ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) <-> ( [ r ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) ) ) |
21 |
20
|
adantl |
|- ( ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) /\ v = [ r ] ( R ~QG M ) ) -> ( ( v ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) <-> ( [ r ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) ) ) |
22 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
23 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
24 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
25 |
3 24
|
syl |
|- ( ph -> R e. Ring ) |
26 |
25
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> R e. Ring ) |
27 |
13
|
mxidlidl |
|- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
28 |
25 4 27
|
syl2anc |
|- ( ph -> M e. ( LIdeal ` R ) ) |
29 |
1
|
opprring |
|- ( R e. Ring -> O e. Ring ) |
30 |
25 29
|
syl |
|- ( ph -> O e. Ring ) |
31 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
32 |
31
|
mxidlidl |
|- ( ( O e. Ring /\ M e. ( MaxIdeal ` O ) ) -> M e. ( LIdeal ` O ) ) |
33 |
30 5 32
|
syl2anc |
|- ( ph -> M e. ( LIdeal ` O ) ) |
34 |
28 33
|
elind |
|- ( ph -> M e. ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) ) |
35 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
36 |
|
eqid |
|- ( LIdeal ` O ) = ( LIdeal ` O ) |
37 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
38 |
35 1 36 37
|
2idlval |
|- ( 2Ideal ` R ) = ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) |
39 |
34 38
|
eleqtrrdi |
|- ( ph -> M e. ( 2Ideal ` R ) ) |
40 |
39
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> M e. ( 2Ideal ` R ) ) |
41 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> X e. ( Base ` R ) ) |
42 |
2 13 22 23 26 40 8 41
|
qusmul2 |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( [ r ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = [ ( r ( .r ` R ) X ) ] ( R ~QG M ) ) |
43 |
|
lidlnsg |
|- ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( NrmSGrp ` R ) ) |
44 |
25 28 43
|
syl2anc |
|- ( ph -> M e. ( NrmSGrp ` R ) ) |
45 |
|
nsgsubg |
|- ( M e. ( NrmSGrp ` R ) -> M e. ( SubGrp ` R ) ) |
46 |
|
eqid |
|- ( R ~QG M ) = ( R ~QG M ) |
47 |
13 46
|
eqger |
|- ( M e. ( SubGrp ` R ) -> ( R ~QG M ) Er ( Base ` R ) ) |
48 |
44 45 47
|
3syl |
|- ( ph -> ( R ~QG M ) Er ( Base ` R ) ) |
49 |
48
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( R ~QG M ) Er ( Base ` R ) ) |
50 |
13 35
|
lidlss |
|- ( M e. ( LIdeal ` R ) -> M C_ ( Base ` R ) ) |
51 |
28 50
|
syl |
|- ( ph -> M C_ ( Base ` R ) ) |
52 |
51
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> M C_ ( Base ` R ) ) |
53 |
13 22 26 8 41
|
ringcld |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( r ( .r ` R ) X ) e. ( Base ` R ) ) |
54 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
55 |
13 54
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
56 |
25 55
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
57 |
56
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
58 |
|
simpr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) |
59 |
58
|
oveq2d |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) = ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) ) |
60 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
61 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
62 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
63 |
25
|
ringgrpd |
|- ( ph -> R e. Grp ) |
64 |
63
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> R e. Grp ) |
65 |
13 60 61 62 64 53
|
grplinvd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( r ( .r ` R ) X ) ) = ( 0g ` R ) ) |
66 |
65
|
oveq1d |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( r ( .r ` R ) X ) ) ( +g ` R ) m ) = ( ( 0g ` R ) ( +g ` R ) m ) ) |
67 |
13 62 64 53
|
grpinvcld |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) e. ( Base ` R ) ) |
68 |
|
simplr |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> m e. M ) |
69 |
52 68
|
sseldd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> m e. ( Base ` R ) ) |
70 |
13 60 64 67 53 69
|
grpassd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( r ( .r ` R ) X ) ) ( +g ` R ) m ) = ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) ) |
71 |
13 60 61 64 69
|
grplidd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( 0g ` R ) ( +g ` R ) m ) = m ) |
72 |
66 70 71
|
3eqtr3d |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) = m ) |
73 |
59 72
|
eqtrd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) = m ) |
74 |
73 68
|
eqeltrd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) |
75 |
13 62 60 46
|
eqgval |
|- ( ( R e. Ring /\ M C_ ( Base ` R ) ) -> ( ( r ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) <-> ( ( r ( .r ` R ) X ) e. ( Base ` R ) /\ ( 1r ` R ) e. ( Base ` R ) /\ ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) ) ) |
76 |
75
|
biimpar |
|- ( ( ( R e. Ring /\ M C_ ( Base ` R ) ) /\ ( ( r ( .r ` R ) X ) e. ( Base ` R ) /\ ( 1r ` R ) e. ( Base ` R ) /\ ( ( ( invg ` R ) ` ( r ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) ) -> ( r ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) |
77 |
26 52 53 57 74 76
|
syl23anc |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( r ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) |
78 |
49 77
|
erthi |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> [ ( r ( .r ` R ) X ) ] ( R ~QG M ) = [ ( 1r ` R ) ] ( R ~QG M ) ) |
79 |
42 78
|
eqtrd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( [ r ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = [ ( 1r ` R ) ] ( R ~QG M ) ) |
80 |
2 37 54
|
qus1 |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> ( Q e. Ring /\ [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) ) |
81 |
80
|
simprd |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) |
82 |
26 40 81
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) |
83 |
79 82
|
eqtrd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> ( [ r ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
84 |
18 21 83
|
rspcedvd |
|- ( ( ( ( ph /\ r e. ( Base ` R ) ) /\ m e. M ) /\ ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) -> E. v e. ( Base ` Q ) ( v ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
85 |
6
|
snssd |
|- ( ph -> { X } C_ ( Base ` R ) ) |
86 |
51 85
|
unssd |
|- ( ph -> ( M u. { X } ) C_ ( Base ` R ) ) |
87 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
88 |
87 13 35
|
rspcl |
|- ( ( R e. Ring /\ ( M u. { X } ) C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` ( M u. { X } ) ) e. ( LIdeal ` R ) ) |
89 |
25 86 88
|
syl2anc |
|- ( ph -> ( ( RSpan ` R ) ` ( M u. { X } ) ) e. ( LIdeal ` R ) ) |
90 |
87 13
|
rspssid |
|- ( ( R e. Ring /\ ( M u. { X } ) C_ ( Base ` R ) ) -> ( M u. { X } ) C_ ( ( RSpan ` R ) ` ( M u. { X } ) ) ) |
91 |
25 86 90
|
syl2anc |
|- ( ph -> ( M u. { X } ) C_ ( ( RSpan ` R ) ` ( M u. { X } ) ) ) |
92 |
91
|
unssad |
|- ( ph -> M C_ ( ( RSpan ` R ) ` ( M u. { X } ) ) ) |
93 |
91
|
unssbd |
|- ( ph -> { X } C_ ( ( RSpan ` R ) ` ( M u. { X } ) ) ) |
94 |
|
snssg |
|- ( X e. ( Base ` R ) -> ( X e. ( ( RSpan ` R ) ` ( M u. { X } ) ) <-> { X } C_ ( ( RSpan ` R ) ` ( M u. { X } ) ) ) ) |
95 |
94
|
biimpar |
|- ( ( X e. ( Base ` R ) /\ { X } C_ ( ( RSpan ` R ) ` ( M u. { X } ) ) ) -> X e. ( ( RSpan ` R ) ` ( M u. { X } ) ) ) |
96 |
6 93 95
|
syl2anc |
|- ( ph -> X e. ( ( RSpan ` R ) ` ( M u. { X } ) ) ) |
97 |
96 7
|
eldifd |
|- ( ph -> X e. ( ( ( RSpan ` R ) ` ( M u. { X } ) ) \ M ) ) |
98 |
13 25 4 89 92 97
|
mxidlmaxv |
|- ( ph -> ( ( RSpan ` R ) ` ( M u. { X } ) ) = ( Base ` R ) ) |
99 |
56 98
|
eleqtrrd |
|- ( ph -> ( 1r ` R ) e. ( ( RSpan ` R ) ` ( M u. { X } ) ) ) |
100 |
6 7
|
eldifd |
|- ( ph -> X e. ( ( Base ` R ) \ M ) ) |
101 |
87 13 61 22 25 60 28 100
|
elrspunsn |
|- ( ph -> ( ( 1r ` R ) e. ( ( RSpan ` R ) ` ( M u. { X } ) ) <-> E. r e. ( Base ` R ) E. m e. M ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) ) |
102 |
99 101
|
mpbid |
|- ( ph -> E. r e. ( Base ` R ) E. m e. M ( 1r ` R ) = ( ( r ( .r ` R ) X ) ( +g ` R ) m ) ) |
103 |
84 102
|
r19.29vva |
|- ( ph -> E. v e. ( Base ` Q ) ( v ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) ) |