Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
|- O = ( oppR ` R ) |
2 |
|
qsdrng.q |
|- Q = ( R /s ( R ~QG M ) ) |
3 |
|
qsdrng.r |
|- ( ph -> R e. NzRing ) |
4 |
|
qsdrng.2 |
|- ( ph -> M e. ( 2Ideal ` R ) ) |
5 |
|
qsdrnglem2.1 |
|- B = ( Base ` R ) |
6 |
|
qsdrnglem2.q |
|- ( ph -> Q e. DivRing ) |
7 |
|
qsdrnglem2.j |
|- ( ph -> J e. ( LIdeal ` R ) ) |
8 |
|
qsdrnglem2.m |
|- ( ph -> M C_ J ) |
9 |
|
qsdrnglem2.x |
|- ( ph -> X e. ( J \ M ) ) |
10 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
11 |
3 10
|
syl |
|- ( ph -> R e. Ring ) |
12 |
11
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> R e. Ring ) |
13 |
7
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J e. ( LIdeal ` R ) ) |
14 |
12
|
ringgrpd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> R e. Grp ) |
15 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
16 |
5 15
|
lidlss |
|- ( J e. ( LIdeal ` R ) -> J C_ B ) |
17 |
13 16
|
syl |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J C_ B ) |
18 |
|
simplr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> s e. B ) |
19 |
9
|
eldifad |
|- ( ph -> X e. J ) |
20 |
19
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> X e. J ) |
21 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
22 |
15 5 21
|
lidlmcl |
|- ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( s e. B /\ X e. J ) ) -> ( s ( .r ` R ) X ) e. J ) |
23 |
12 13 18 20 22
|
syl22anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) e. J ) |
24 |
17 23
|
sseldd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) e. B ) |
25 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
26 |
5 25
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
27 |
12 26
|
syl |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( 1r ` R ) e. B ) |
28 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
29 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
30 |
5 28 29
|
grpasscan1 |
|- ( ( R e. Grp /\ ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) = ( 1r ` R ) ) |
31 |
14 24 27 30
|
syl3anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) = ( 1r ` R ) ) |
32 |
8
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M C_ J ) |
33 |
7 16
|
syl |
|- ( ph -> J C_ B ) |
34 |
8 33
|
sstrd |
|- ( ph -> M C_ B ) |
35 |
34
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M C_ B ) |
36 |
|
simpr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) |
37 |
36
|
oveq1d |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( [ s ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) ) |
38 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
39 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
40 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
41 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
42 |
|
eqid |
|- ( invr ` Q ) = ( invr ` Q ) |
43 |
6
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> Q e. DivRing ) |
44 |
33 19
|
sseldd |
|- ( ph -> X e. B ) |
45 |
|
ovex |
|- ( R ~QG M ) e. _V |
46 |
45
|
ecelqsi |
|- ( X e. B -> [ X ] ( R ~QG M ) e. ( B /. ( R ~QG M ) ) ) |
47 |
44 46
|
syl |
|- ( ph -> [ X ] ( R ~QG M ) e. ( B /. ( R ~QG M ) ) ) |
48 |
2
|
a1i |
|- ( ph -> Q = ( R /s ( R ~QG M ) ) ) |
49 |
5
|
a1i |
|- ( ph -> B = ( Base ` R ) ) |
50 |
45
|
a1i |
|- ( ph -> ( R ~QG M ) e. _V ) |
51 |
48 49 50 3
|
qusbas |
|- ( ph -> ( B /. ( R ~QG M ) ) = ( Base ` Q ) ) |
52 |
47 51
|
eleqtrd |
|- ( ph -> [ X ] ( R ~QG M ) e. ( Base ` Q ) ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ X ] ( R ~QG M ) e. ( Base ` Q ) ) |
54 |
4
|
2idllidld |
|- ( ph -> M e. ( LIdeal ` R ) ) |
55 |
15
|
lidlsubg |
|- ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( SubGrp ` R ) ) |
56 |
11 54 55
|
syl2anc |
|- ( ph -> M e. ( SubGrp ` R ) ) |
57 |
|
eqid |
|- ( R ~QG M ) = ( R ~QG M ) |
58 |
5 57
|
eqger |
|- ( M e. ( SubGrp ` R ) -> ( R ~QG M ) Er B ) |
59 |
56 58
|
syl |
|- ( ph -> ( R ~QG M ) Er B ) |
60 |
|
ecref |
|- ( ( ( R ~QG M ) Er B /\ X e. B ) -> X e. [ X ] ( R ~QG M ) ) |
61 |
59 44 60
|
syl2anc |
|- ( ph -> X e. [ X ] ( R ~QG M ) ) |
62 |
9
|
eldifbd |
|- ( ph -> -. X e. M ) |
63 |
|
nelne1 |
|- ( ( X e. [ X ] ( R ~QG M ) /\ -. X e. M ) -> [ X ] ( R ~QG M ) =/= M ) |
64 |
61 62 63
|
syl2anc |
|- ( ph -> [ X ] ( R ~QG M ) =/= M ) |
65 |
|
lidlnsg |
|- ( ( R e. Ring /\ M e. ( LIdeal ` R ) ) -> M e. ( NrmSGrp ` R ) ) |
66 |
11 54 65
|
syl2anc |
|- ( ph -> M e. ( NrmSGrp ` R ) ) |
67 |
2
|
qus0g |
|- ( M e. ( NrmSGrp ` R ) -> ( 0g ` Q ) = M ) |
68 |
66 67
|
syl |
|- ( ph -> ( 0g ` Q ) = M ) |
69 |
64 68
|
neeqtrrd |
|- ( ph -> [ X ] ( R ~QG M ) =/= ( 0g ` Q ) ) |
70 |
69
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ X ] ( R ~QG M ) =/= ( 0g ` Q ) ) |
71 |
38 39 40 41 42 43 53 70
|
drnginvrld |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = ( 1r ` Q ) ) |
72 |
4
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M e. ( 2Ideal ` R ) ) |
73 |
44
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> X e. B ) |
74 |
2 5 21 40 12 72 18 73
|
qusmul2 |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( [ s ] ( R ~QG M ) ( .r ` Q ) [ X ] ( R ~QG M ) ) = [ ( s ( .r ` R ) X ) ] ( R ~QG M ) ) |
75 |
37 71 74
|
3eqtr3rd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = ( 1r ` Q ) ) |
76 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
77 |
2 76 25
|
qus1 |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> ( Q e. Ring /\ [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) ) |
78 |
77
|
simprd |
|- ( ( R e. Ring /\ M e. ( 2Ideal ` R ) ) -> [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) |
79 |
12 72 78
|
syl2anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( 1r ` R ) ] ( R ~QG M ) = ( 1r ` Q ) ) |
80 |
75 79
|
eqtr4d |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = [ ( 1r ` R ) ] ( R ~QG M ) ) |
81 |
56
|
ad2antrr |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> M e. ( SubGrp ` R ) ) |
82 |
81 58
|
syl |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( R ~QG M ) Er B ) |
83 |
82 27
|
erth2 |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) <-> [ ( s ( .r ` R ) X ) ] ( R ~QG M ) = [ ( 1r ` R ) ] ( R ~QG M ) ) ) |
84 |
80 83
|
mpbird |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) |
85 |
5 29 28 57
|
eqgval |
|- ( ( R e. Ring /\ M C_ B ) -> ( ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) <-> ( ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) ) ) |
86 |
85
|
biimpa |
|- ( ( ( R e. Ring /\ M C_ B ) /\ ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) -> ( ( s ( .r ` R ) X ) e. B /\ ( 1r ` R ) e. B /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) ) |
87 |
86
|
simp3d |
|- ( ( ( R e. Ring /\ M C_ B ) /\ ( s ( .r ` R ) X ) ( R ~QG M ) ( 1r ` R ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) |
88 |
12 35 84 87
|
syl21anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. M ) |
89 |
32 88
|
sseldd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. J ) |
90 |
15 28
|
lidlacl |
|- ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( ( s ( .r ` R ) X ) e. J /\ ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) e. J ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) e. J ) |
91 |
12 13 23 89 90
|
syl22anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( ( s ( .r ` R ) X ) ( +g ` R ) ( ( ( invg ` R ) ` ( s ( .r ` R ) X ) ) ( +g ` R ) ( 1r ` R ) ) ) e. J ) |
92 |
31 91
|
eqeltrrd |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> ( 1r ` R ) e. J ) |
93 |
15 5 25
|
lidl1el |
|- ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) -> ( ( 1r ` R ) e. J <-> J = B ) ) |
94 |
93
|
biimpa |
|- ( ( ( R e. Ring /\ J e. ( LIdeal ` R ) ) /\ ( 1r ` R ) e. J ) -> J = B ) |
95 |
12 13 92 94
|
syl21anc |
|- ( ( ( ph /\ s e. B ) /\ ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) -> J = B ) |
96 |
38 39 42 6 52 69
|
drnginvrcld |
|- ( ph -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( Base ` Q ) ) |
97 |
96 51
|
eleqtrrd |
|- ( ph -> ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( B /. ( R ~QG M ) ) ) |
98 |
|
elqsi |
|- ( ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) e. ( B /. ( R ~QG M ) ) -> E. s e. B ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) |
99 |
97 98
|
syl |
|- ( ph -> E. s e. B ( ( invr ` Q ) ` [ X ] ( R ~QG M ) ) = [ s ] ( R ~QG M ) ) |
100 |
95 99
|
r19.29a |
|- ( ph -> J = B ) |