| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( A /. R ) = ( A /. R ) | 
						
							| 2 |  | eleq2 |  |-  ( [ x ] R = B -> ( C e. [ x ] R <-> C e. B ) ) | 
						
							| 3 |  | eqeq1 |  |-  ( [ x ] R = B -> ( [ x ] R = [ C ] R <-> B = [ C ] R ) ) | 
						
							| 4 | 2 3 | imbi12d |  |-  ( [ x ] R = B -> ( ( C e. [ x ] R -> [ x ] R = [ C ] R ) <-> ( C e. B -> B = [ C ] R ) ) ) | 
						
							| 5 |  | elecg |  |-  ( ( C e. [ x ] R /\ x e. _V ) -> ( C e. [ x ] R <-> x R C ) ) | 
						
							| 6 | 5 | elvd |  |-  ( C e. [ x ] R -> ( C e. [ x ] R <-> x R C ) ) | 
						
							| 7 | 6 | ibi |  |-  ( C e. [ x ] R -> x R C ) | 
						
							| 8 |  | simpll |  |-  ( ( ( R Er X /\ x e. A ) /\ x R C ) -> R Er X ) | 
						
							| 9 |  | simpr |  |-  ( ( ( R Er X /\ x e. A ) /\ x R C ) -> x R C ) | 
						
							| 10 | 8 9 | erthi |  |-  ( ( ( R Er X /\ x e. A ) /\ x R C ) -> [ x ] R = [ C ] R ) | 
						
							| 11 | 10 | ex |  |-  ( ( R Er X /\ x e. A ) -> ( x R C -> [ x ] R = [ C ] R ) ) | 
						
							| 12 | 7 11 | syl5 |  |-  ( ( R Er X /\ x e. A ) -> ( C e. [ x ] R -> [ x ] R = [ C ] R ) ) | 
						
							| 13 | 1 4 12 | ectocld |  |-  ( ( R Er X /\ B e. ( A /. R ) ) -> ( C e. B -> B = [ C ] R ) ) | 
						
							| 14 | 13 | 3impia |  |-  ( ( R Er X /\ B e. ( A /. R ) /\ C e. B ) -> B = [ C ] R ) |