Metamath Proof Explorer


Theorem qseq1

Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion qseq1
|- ( A = B -> ( A /. C ) = ( B /. C ) )

Proof

Step Hyp Ref Expression
1 rexeq
 |-  ( A = B -> ( E. x e. A y = [ x ] C <-> E. x e. B y = [ x ] C ) )
2 1 abbidv
 |-  ( A = B -> { y | E. x e. A y = [ x ] C } = { y | E. x e. B y = [ x ] C } )
3 df-qs
 |-  ( A /. C ) = { y | E. x e. A y = [ x ] C }
4 df-qs
 |-  ( B /. C ) = { y | E. x e. B y = [ x ] C }
5 2 3 4 3eqtr4g
 |-  ( A = B -> ( A /. C ) = ( B /. C ) )