Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | qseq1 | |- ( A = B -> ( A /. C ) = ( B /. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq | |- ( A = B -> ( E. x e. A y = [ x ] C <-> E. x e. B y = [ x ] C ) ) |
|
2 | 1 | abbidv | |- ( A = B -> { y | E. x e. A y = [ x ] C } = { y | E. x e. B y = [ x ] C } ) |
3 | df-qs | |- ( A /. C ) = { y | E. x e. A y = [ x ] C } |
|
4 | df-qs | |- ( B /. C ) = { y | E. x e. B y = [ x ] C } |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> ( A /. C ) = ( B /. C ) ) |