Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qseq1 | |- ( A = B -> ( A /. C ) = ( B /. C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexeq | |- ( A = B -> ( E. x e. A y = [ x ] C <-> E. x e. B y = [ x ] C ) ) | |
| 2 | 1 | abbidv |  |-  ( A = B -> { y | E. x e. A y = [ x ] C } = { y | E. x e. B y = [ x ] C } ) | 
| 3 | df-qs |  |-  ( A /. C ) = { y | E. x e. A y = [ x ] C } | |
| 4 | df-qs |  |-  ( B /. C ) = { y | E. x e. B y = [ x ] C } | |
| 5 | 2 3 4 | 3eqtr4g | |- ( A = B -> ( A /. C ) = ( B /. C ) ) |