Metamath Proof Explorer


Theorem qseq2

Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion qseq2
|- ( A = B -> ( C /. A ) = ( C /. B ) )

Proof

Step Hyp Ref Expression
1 eceq2
 |-  ( A = B -> [ x ] A = [ x ] B )
2 1 eqeq2d
 |-  ( A = B -> ( y = [ x ] A <-> y = [ x ] B ) )
3 2 rexbidv
 |-  ( A = B -> ( E. x e. C y = [ x ] A <-> E. x e. C y = [ x ] B ) )
4 3 abbidv
 |-  ( A = B -> { y | E. x e. C y = [ x ] A } = { y | E. x e. C y = [ x ] B } )
5 df-qs
 |-  ( C /. A ) = { y | E. x e. C y = [ x ] A }
6 df-qs
 |-  ( C /. B ) = { y | E. x e. C y = [ x ] B }
7 4 5 6 3eqtr4g
 |-  ( A = B -> ( C /. A ) = ( C /. B ) )