Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | qseq2 | |- ( A = B -> ( C /. A ) = ( C /. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq2 | |- ( A = B -> [ x ] A = [ x ] B ) |
|
2 | 1 | eqeq2d | |- ( A = B -> ( y = [ x ] A <-> y = [ x ] B ) ) |
3 | 2 | rexbidv | |- ( A = B -> ( E. x e. C y = [ x ] A <-> E. x e. C y = [ x ] B ) ) |
4 | 3 | abbidv | |- ( A = B -> { y | E. x e. C y = [ x ] A } = { y | E. x e. C y = [ x ] B } ) |
5 | df-qs | |- ( C /. A ) = { y | E. x e. C y = [ x ] A } |
|
6 | df-qs | |- ( C /. B ) = { y | E. x e. C y = [ x ] B } |
|
7 | 4 5 6 | 3eqtr4g | |- ( A = B -> ( C /. A ) = ( C /. B ) ) |