Step |
Hyp |
Ref |
Expression |
1 |
|
qsfld.1 |
|- Q = ( R /s ( R ~QG M ) ) |
2 |
|
qsfld.2 |
|- ( ph -> R e. CRing ) |
3 |
|
qsfld.3 |
|- ( ph -> R e. NzRing ) |
4 |
|
qsfld.4 |
|- ( ph -> M e. ( LIdeal ` R ) ) |
5 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
6 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
7 |
6
|
crng2idl |
|- ( R e. CRing -> ( LIdeal ` R ) = ( 2Ideal ` R ) ) |
8 |
2 7
|
syl |
|- ( ph -> ( LIdeal ` R ) = ( 2Ideal ` R ) ) |
9 |
4 8
|
eleqtrd |
|- ( ph -> M e. ( 2Ideal ` R ) ) |
10 |
5 1 3 9
|
qsdrng |
|- ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) ) |
11 |
|
isfld |
|- ( Q e. Field <-> ( Q e. DivRing /\ Q e. CRing ) ) |
12 |
1 6
|
quscrng |
|- ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> Q e. CRing ) |
13 |
2 4 12
|
syl2anc |
|- ( ph -> Q e. CRing ) |
14 |
13
|
biantrud |
|- ( ph -> ( Q e. DivRing <-> ( Q e. DivRing /\ Q e. CRing ) ) ) |
15 |
11 14
|
bitr4id |
|- ( ph -> ( Q e. Field <-> Q e. DivRing ) ) |
16 |
|
eqid |
|- ( MaxIdeal ` R ) = ( MaxIdeal ` R ) |
17 |
16 5
|
crngmxidl |
|- ( R e. CRing -> ( MaxIdeal ` R ) = ( MaxIdeal ` ( oppR ` R ) ) ) |
18 |
2 17
|
syl |
|- ( ph -> ( MaxIdeal ` R ) = ( MaxIdeal ` ( oppR ` R ) ) ) |
19 |
18
|
eleq2d |
|- ( ph -> ( M e. ( MaxIdeal ` R ) <-> M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) |
20 |
19
|
biimpd |
|- ( ph -> ( M e. ( MaxIdeal ` R ) -> M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) |
21 |
20
|
pm4.71d |
|- ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) ) |
22 |
10 15 21
|
3bitr4d |
|- ( ph -> ( Q e. Field <-> M e. ( MaxIdeal ` R ) ) ) |