Metamath Proof Explorer


Theorem qsfld

Description: An ideal M in the commutative ring R is maximal if and only if the factor ring Q is a field. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses qsfld.1
|- Q = ( R /s ( R ~QG M ) )
qsfld.2
|- ( ph -> R e. CRing )
qsfld.3
|- ( ph -> R e. NzRing )
qsfld.4
|- ( ph -> M e. ( LIdeal ` R ) )
Assertion qsfld
|- ( ph -> ( Q e. Field <-> M e. ( MaxIdeal ` R ) ) )

Proof

Step Hyp Ref Expression
1 qsfld.1
 |-  Q = ( R /s ( R ~QG M ) )
2 qsfld.2
 |-  ( ph -> R e. CRing )
3 qsfld.3
 |-  ( ph -> R e. NzRing )
4 qsfld.4
 |-  ( ph -> M e. ( LIdeal ` R ) )
5 eqid
 |-  ( oppR ` R ) = ( oppR ` R )
6 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
7 6 crng2idl
 |-  ( R e. CRing -> ( LIdeal ` R ) = ( 2Ideal ` R ) )
8 2 7 syl
 |-  ( ph -> ( LIdeal ` R ) = ( 2Ideal ` R ) )
9 4 8 eleqtrd
 |-  ( ph -> M e. ( 2Ideal ` R ) )
10 5 1 3 9 qsdrng
 |-  ( ph -> ( Q e. DivRing <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) )
11 isfld
 |-  ( Q e. Field <-> ( Q e. DivRing /\ Q e. CRing ) )
12 1 6 quscrng
 |-  ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> Q e. CRing )
13 2 4 12 syl2anc
 |-  ( ph -> Q e. CRing )
14 13 biantrud
 |-  ( ph -> ( Q e. DivRing <-> ( Q e. DivRing /\ Q e. CRing ) ) )
15 11 14 bitr4id
 |-  ( ph -> ( Q e. Field <-> Q e. DivRing ) )
16 eqid
 |-  ( MaxIdeal ` R ) = ( MaxIdeal ` R )
17 16 5 crngmxidl
 |-  ( R e. CRing -> ( MaxIdeal ` R ) = ( MaxIdeal ` ( oppR ` R ) ) )
18 2 17 syl
 |-  ( ph -> ( MaxIdeal ` R ) = ( MaxIdeal ` ( oppR ` R ) ) )
19 18 eleq2d
 |-  ( ph -> ( M e. ( MaxIdeal ` R ) <-> M e. ( MaxIdeal ` ( oppR ` R ) ) ) )
20 19 biimpd
 |-  ( ph -> ( M e. ( MaxIdeal ` R ) -> M e. ( MaxIdeal ` ( oppR ` R ) ) ) )
21 20 pm4.71d
 |-  ( ph -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( MaxIdeal ` R ) /\ M e. ( MaxIdeal ` ( oppR ` R ) ) ) ) )
22 10 15 21 3bitr4d
 |-  ( ph -> ( Q e. Field <-> M e. ( MaxIdeal ` R ) ) )