Metamath Proof Explorer


Theorem qsid

Description: A set is equal to its quotient set modulo the converse membership relation. (Note: the converse membership relation is not an equivalence relation.) (Contributed by NM, 13-Aug-1995) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion qsid
|- ( A /. `' _E ) = A

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 ecid
 |-  [ x ] `' _E = x
3 2 eqeq2i
 |-  ( y = [ x ] `' _E <-> y = x )
4 equcom
 |-  ( y = x <-> x = y )
5 3 4 bitri
 |-  ( y = [ x ] `' _E <-> x = y )
6 5 rexbii
 |-  ( E. x e. A y = [ x ] `' _E <-> E. x e. A x = y )
7 vex
 |-  y e. _V
8 7 elqs
 |-  ( y e. ( A /. `' _E ) <-> E. x e. A y = [ x ] `' _E )
9 risset
 |-  ( y e. A <-> E. x e. A x = y )
10 6 8 9 3bitr4i
 |-  ( y e. ( A /. `' _E ) <-> y e. A )
11 10 eqriv
 |-  ( A /. `' _E ) = A