| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ecinxp |  |-  ( ( ( R " A ) C_ A /\ x e. A ) -> [ x ] R = [ x ] ( R i^i ( A X. A ) ) ) | 
						
							| 2 | 1 | eqeq2d |  |-  ( ( ( R " A ) C_ A /\ x e. A ) -> ( y = [ x ] R <-> y = [ x ] ( R i^i ( A X. A ) ) ) ) | 
						
							| 3 | 2 | rexbidva |  |-  ( ( R " A ) C_ A -> ( E. x e. A y = [ x ] R <-> E. x e. A y = [ x ] ( R i^i ( A X. A ) ) ) ) | 
						
							| 4 | 3 | abbidv |  |-  ( ( R " A ) C_ A -> { y | E. x e. A y = [ x ] R } = { y | E. x e. A y = [ x ] ( R i^i ( A X. A ) ) } ) | 
						
							| 5 |  | df-qs |  |-  ( A /. R ) = { y | E. x e. A y = [ x ] R } | 
						
							| 6 |  | df-qs |  |-  ( A /. ( R i^i ( A X. A ) ) ) = { y | E. x e. A y = [ x ] ( R i^i ( A X. A ) ) } | 
						
							| 7 | 4 5 6 | 3eqtr4g |  |-  ( ( R " A ) C_ A -> ( A /. R ) = ( A /. ( R i^i ( A X. A ) ) ) ) |