Step |
Hyp |
Ref |
Expression |
1 |
|
ecinxp |
|- ( ( ( R " A ) C_ A /\ x e. A ) -> [ x ] R = [ x ] ( R i^i ( A X. A ) ) ) |
2 |
1
|
eqeq2d |
|- ( ( ( R " A ) C_ A /\ x e. A ) -> ( y = [ x ] R <-> y = [ x ] ( R i^i ( A X. A ) ) ) ) |
3 |
2
|
rexbidva |
|- ( ( R " A ) C_ A -> ( E. x e. A y = [ x ] R <-> E. x e. A y = [ x ] ( R i^i ( A X. A ) ) ) ) |
4 |
3
|
abbidv |
|- ( ( R " A ) C_ A -> { y | E. x e. A y = [ x ] R } = { y | E. x e. A y = [ x ] ( R i^i ( A X. A ) ) } ) |
5 |
|
df-qs |
|- ( A /. R ) = { y | E. x e. A y = [ x ] R } |
6 |
|
df-qs |
|- ( A /. ( R i^i ( A X. A ) ) ) = { y | E. x e. A y = [ x ] ( R i^i ( A X. A ) ) } |
7 |
4 5 6
|
3eqtr4g |
|- ( ( R " A ) C_ A -> ( A /. R ) = ( A /. ( R i^i ( A X. A ) ) ) ) |