Description: The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | qsqcl | |- ( A e. QQ -> ( A ^ 2 ) e. QQ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qcn | |- ( A e. QQ -> A e. CC ) |
|
2 | sqval | |- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
|
3 | 1 2 | syl | |- ( A e. QQ -> ( A ^ 2 ) = ( A x. A ) ) |
4 | qmulcl | |- ( ( A e. QQ /\ A e. QQ ) -> ( A x. A ) e. QQ ) |
|
5 | 4 | anidms | |- ( A e. QQ -> ( A x. A ) e. QQ ) |
6 | 3 5 | eqeltrd | |- ( A e. QQ -> ( A ^ 2 ) e. QQ ) |