Metamath Proof Explorer


Theorem qsqcl

Description: The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion qsqcl
|- ( A e. QQ -> ( A ^ 2 ) e. QQ )

Proof

Step Hyp Ref Expression
1 qcn
 |-  ( A e. QQ -> A e. CC )
2 sqval
 |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) )
3 1 2 syl
 |-  ( A e. QQ -> ( A ^ 2 ) = ( A x. A ) )
4 qmulcl
 |-  ( ( A e. QQ /\ A e. QQ ) -> ( A x. A ) e. QQ )
5 4 anidms
 |-  ( A e. QQ -> ( A x. A ) e. QQ )
6 3 5 eqeltrd
 |-  ( A e. QQ -> ( A ^ 2 ) e. QQ )