Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
ltnle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> -. A <_ 0 ) ) |
3 |
1 2
|
mpan |
|- ( A e. RR -> ( 0 < A <-> -. A <_ 0 ) ) |
4 |
|
qbtwnre |
|- ( ( 0 e. RR /\ A e. RR /\ 0 < A ) -> E. x e. QQ ( 0 < x /\ x < A ) ) |
5 |
1 4
|
mp3an1 |
|- ( ( A e. RR /\ 0 < A ) -> E. x e. QQ ( 0 < x /\ x < A ) ) |
6 |
5
|
ex |
|- ( A e. RR -> ( 0 < A -> E. x e. QQ ( 0 < x /\ x < A ) ) ) |
7 |
|
qre |
|- ( x e. QQ -> x e. RR ) |
8 |
|
ltnsym |
|- ( ( A e. RR /\ x e. RR ) -> ( A < x -> -. x < A ) ) |
9 |
8
|
con2d |
|- ( ( A e. RR /\ x e. RR ) -> ( x < A -> -. A < x ) ) |
10 |
7 9
|
sylan2 |
|- ( ( A e. RR /\ x e. QQ ) -> ( x < A -> -. A < x ) ) |
11 |
10
|
anim2d |
|- ( ( A e. RR /\ x e. QQ ) -> ( ( 0 < x /\ x < A ) -> ( 0 < x /\ -. A < x ) ) ) |
12 |
11
|
reximdva |
|- ( A e. RR -> ( E. x e. QQ ( 0 < x /\ x < A ) -> E. x e. QQ ( 0 < x /\ -. A < x ) ) ) |
13 |
6 12
|
syld |
|- ( A e. RR -> ( 0 < A -> E. x e. QQ ( 0 < x /\ -. A < x ) ) ) |
14 |
3 13
|
sylbird |
|- ( A e. RR -> ( -. A <_ 0 -> E. x e. QQ ( 0 < x /\ -. A < x ) ) ) |
15 |
|
rexanali |
|- ( E. x e. QQ ( 0 < x /\ -. A < x ) <-> -. A. x e. QQ ( 0 < x -> A < x ) ) |
16 |
14 15
|
syl6ib |
|- ( A e. RR -> ( -. A <_ 0 -> -. A. x e. QQ ( 0 < x -> A < x ) ) ) |
17 |
16
|
con4d |
|- ( A e. RR -> ( A. x e. QQ ( 0 < x -> A < x ) -> A <_ 0 ) ) |
18 |
17
|
imp |
|- ( ( A e. RR /\ A. x e. QQ ( 0 < x -> A < x ) ) -> A <_ 0 ) |
19 |
18
|
3adant2 |
|- ( ( A e. RR /\ 0 <_ A /\ A. x e. QQ ( 0 < x -> A < x ) ) -> A <_ 0 ) |
20 |
|
letri3 |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) |
21 |
1 20
|
mpan2 |
|- ( A e. RR -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) |
22 |
21
|
rbaibd |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A = 0 <-> A <_ 0 ) ) |
23 |
22
|
3adant3 |
|- ( ( A e. RR /\ 0 <_ A /\ A. x e. QQ ( 0 < x -> A < x ) ) -> ( A = 0 <-> A <_ 0 ) ) |
24 |
19 23
|
mpbird |
|- ( ( A e. RR /\ 0 <_ A /\ A. x e. QQ ( 0 < x -> A < x ) ) -> A = 0 ) |