Step |
Hyp |
Ref |
Expression |
1 |
|
qsss.1 |
|- ( ph -> R Er A ) |
2 |
|
vex |
|- x e. _V |
3 |
2
|
elqs |
|- ( x e. ( A /. R ) <-> E. y e. A x = [ y ] R ) |
4 |
1
|
ecss |
|- ( ph -> [ y ] R C_ A ) |
5 |
|
sseq1 |
|- ( x = [ y ] R -> ( x C_ A <-> [ y ] R C_ A ) ) |
6 |
4 5
|
syl5ibrcom |
|- ( ph -> ( x = [ y ] R -> x C_ A ) ) |
7 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
8 |
6 7
|
syl6ibr |
|- ( ph -> ( x = [ y ] R -> x e. ~P A ) ) |
9 |
8
|
rexlimdvw |
|- ( ph -> ( E. y e. A x = [ y ] R -> x e. ~P A ) ) |
10 |
3 9
|
syl5bi |
|- ( ph -> ( x e. ( A /. R ) -> x e. ~P A ) ) |
11 |
10
|
ssrdv |
|- ( ph -> ( A /. R ) C_ ~P A ) |