| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elq |  |-  ( z e. QQ <-> E. x e. ZZ E. y e. NN z = ( x / y ) ) | 
						
							| 2 |  | drngring |  |-  ( ( CCfld |`s R ) e. DivRing -> ( CCfld |`s R ) e. Ring ) | 
						
							| 3 | 2 | ad2antlr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( CCfld |`s R ) e. Ring ) | 
						
							| 4 |  | zsssubrg |  |-  ( R e. ( SubRing ` CCfld ) -> ZZ C_ R ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ZZ C_ R ) | 
						
							| 6 |  | eqid |  |-  ( CCfld |`s R ) = ( CCfld |`s R ) | 
						
							| 7 | 6 | subrgbas |  |-  ( R e. ( SubRing ` CCfld ) -> R = ( Base ` ( CCfld |`s R ) ) ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> R = ( Base ` ( CCfld |`s R ) ) ) | 
						
							| 9 | 5 8 | sseqtrd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ZZ C_ ( Base ` ( CCfld |`s R ) ) ) | 
						
							| 10 |  | simprl |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. ZZ ) | 
						
							| 11 | 9 10 | sseldd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. ( Base ` ( CCfld |`s R ) ) ) | 
						
							| 12 |  | nnz |  |-  ( y e. NN -> y e. ZZ ) | 
						
							| 13 | 12 | ad2antll |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ZZ ) | 
						
							| 14 | 9 13 | sseldd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ( Base ` ( CCfld |`s R ) ) ) | 
						
							| 15 |  | nnne0 |  |-  ( y e. NN -> y =/= 0 ) | 
						
							| 16 | 15 | ad2antll |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= 0 ) | 
						
							| 17 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 18 | 6 17 | subrg0 |  |-  ( R e. ( SubRing ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s R ) ) ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> 0 = ( 0g ` ( CCfld |`s R ) ) ) | 
						
							| 20 | 16 19 | neeqtrd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= ( 0g ` ( CCfld |`s R ) ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` ( CCfld |`s R ) ) = ( Base ` ( CCfld |`s R ) ) | 
						
							| 22 |  | eqid |  |-  ( Unit ` ( CCfld |`s R ) ) = ( Unit ` ( CCfld |`s R ) ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` ( CCfld |`s R ) ) = ( 0g ` ( CCfld |`s R ) ) | 
						
							| 24 | 21 22 23 | drngunit |  |-  ( ( CCfld |`s R ) e. DivRing -> ( y e. ( Unit ` ( CCfld |`s R ) ) <-> ( y e. ( Base ` ( CCfld |`s R ) ) /\ y =/= ( 0g ` ( CCfld |`s R ) ) ) ) ) | 
						
							| 25 | 24 | ad2antlr |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( y e. ( Unit ` ( CCfld |`s R ) ) <-> ( y e. ( Base ` ( CCfld |`s R ) ) /\ y =/= ( 0g ` ( CCfld |`s R ) ) ) ) ) | 
						
							| 26 | 14 20 25 | mpbir2and |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ( Unit ` ( CCfld |`s R ) ) ) | 
						
							| 27 |  | eqid |  |-  ( /r ` ( CCfld |`s R ) ) = ( /r ` ( CCfld |`s R ) ) | 
						
							| 28 | 21 22 27 | dvrcl |  |-  ( ( ( CCfld |`s R ) e. Ring /\ x e. ( Base ` ( CCfld |`s R ) ) /\ y e. ( Unit ` ( CCfld |`s R ) ) ) -> ( x ( /r ` ( CCfld |`s R ) ) y ) e. ( Base ` ( CCfld |`s R ) ) ) | 
						
							| 29 | 3 11 26 28 | syl3anc |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x ( /r ` ( CCfld |`s R ) ) y ) e. ( Base ` ( CCfld |`s R ) ) ) | 
						
							| 30 |  | simpll |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> R e. ( SubRing ` CCfld ) ) | 
						
							| 31 | 5 10 | sseldd |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. R ) | 
						
							| 32 |  | cnflddiv |  |-  / = ( /r ` CCfld ) | 
						
							| 33 | 6 32 22 27 | subrgdv |  |-  ( ( R e. ( SubRing ` CCfld ) /\ x e. R /\ y e. ( Unit ` ( CCfld |`s R ) ) ) -> ( x / y ) = ( x ( /r ` ( CCfld |`s R ) ) y ) ) | 
						
							| 34 | 30 31 26 33 | syl3anc |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x / y ) = ( x ( /r ` ( CCfld |`s R ) ) y ) ) | 
						
							| 35 | 29 34 8 | 3eltr4d |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x / y ) e. R ) | 
						
							| 36 |  | eleq1 |  |-  ( z = ( x / y ) -> ( z e. R <-> ( x / y ) e. R ) ) | 
						
							| 37 | 35 36 | syl5ibrcom |  |-  ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( z = ( x / y ) -> z e. R ) ) | 
						
							| 38 | 37 | rexlimdvva |  |-  ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> ( E. x e. ZZ E. y e. NN z = ( x / y ) -> z e. R ) ) | 
						
							| 39 | 1 38 | biimtrid |  |-  ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> ( z e. QQ -> z e. R ) ) | 
						
							| 40 | 39 | ssrdv |  |-  ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> QQ C_ R ) |