Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
|- ( z e. QQ <-> E. x e. ZZ E. y e. NN z = ( x / y ) ) |
2 |
|
drngring |
|- ( ( CCfld |`s R ) e. DivRing -> ( CCfld |`s R ) e. Ring ) |
3 |
2
|
ad2antlr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( CCfld |`s R ) e. Ring ) |
4 |
|
zsssubrg |
|- ( R e. ( SubRing ` CCfld ) -> ZZ C_ R ) |
5 |
4
|
ad2antrr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ZZ C_ R ) |
6 |
|
eqid |
|- ( CCfld |`s R ) = ( CCfld |`s R ) |
7 |
6
|
subrgbas |
|- ( R e. ( SubRing ` CCfld ) -> R = ( Base ` ( CCfld |`s R ) ) ) |
8 |
7
|
ad2antrr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> R = ( Base ` ( CCfld |`s R ) ) ) |
9 |
5 8
|
sseqtrd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ZZ C_ ( Base ` ( CCfld |`s R ) ) ) |
10 |
|
simprl |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. ZZ ) |
11 |
9 10
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. ( Base ` ( CCfld |`s R ) ) ) |
12 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
13 |
12
|
ad2antll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ZZ ) |
14 |
9 13
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ( Base ` ( CCfld |`s R ) ) ) |
15 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
16 |
15
|
ad2antll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= 0 ) |
17 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
18 |
6 17
|
subrg0 |
|- ( R e. ( SubRing ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s R ) ) ) |
19 |
18
|
ad2antrr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> 0 = ( 0g ` ( CCfld |`s R ) ) ) |
20 |
16 19
|
neeqtrd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= ( 0g ` ( CCfld |`s R ) ) ) |
21 |
|
eqid |
|- ( Base ` ( CCfld |`s R ) ) = ( Base ` ( CCfld |`s R ) ) |
22 |
|
eqid |
|- ( Unit ` ( CCfld |`s R ) ) = ( Unit ` ( CCfld |`s R ) ) |
23 |
|
eqid |
|- ( 0g ` ( CCfld |`s R ) ) = ( 0g ` ( CCfld |`s R ) ) |
24 |
21 22 23
|
drngunit |
|- ( ( CCfld |`s R ) e. DivRing -> ( y e. ( Unit ` ( CCfld |`s R ) ) <-> ( y e. ( Base ` ( CCfld |`s R ) ) /\ y =/= ( 0g ` ( CCfld |`s R ) ) ) ) ) |
25 |
24
|
ad2antlr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( y e. ( Unit ` ( CCfld |`s R ) ) <-> ( y e. ( Base ` ( CCfld |`s R ) ) /\ y =/= ( 0g ` ( CCfld |`s R ) ) ) ) ) |
26 |
14 20 25
|
mpbir2and |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ( Unit ` ( CCfld |`s R ) ) ) |
27 |
|
eqid |
|- ( /r ` ( CCfld |`s R ) ) = ( /r ` ( CCfld |`s R ) ) |
28 |
21 22 27
|
dvrcl |
|- ( ( ( CCfld |`s R ) e. Ring /\ x e. ( Base ` ( CCfld |`s R ) ) /\ y e. ( Unit ` ( CCfld |`s R ) ) ) -> ( x ( /r ` ( CCfld |`s R ) ) y ) e. ( Base ` ( CCfld |`s R ) ) ) |
29 |
3 11 26 28
|
syl3anc |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x ( /r ` ( CCfld |`s R ) ) y ) e. ( Base ` ( CCfld |`s R ) ) ) |
30 |
|
simpll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> R e. ( SubRing ` CCfld ) ) |
31 |
5 10
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. R ) |
32 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
33 |
6 32 22 27
|
subrgdv |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. R /\ y e. ( Unit ` ( CCfld |`s R ) ) ) -> ( x / y ) = ( x ( /r ` ( CCfld |`s R ) ) y ) ) |
34 |
30 31 26 33
|
syl3anc |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x / y ) = ( x ( /r ` ( CCfld |`s R ) ) y ) ) |
35 |
29 34 8
|
3eltr4d |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x / y ) e. R ) |
36 |
|
eleq1 |
|- ( z = ( x / y ) -> ( z e. R <-> ( x / y ) e. R ) ) |
37 |
35 36
|
syl5ibrcom |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( z = ( x / y ) -> z e. R ) ) |
38 |
37
|
rexlimdvva |
|- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> ( E. x e. ZZ E. y e. NN z = ( x / y ) -> z e. R ) ) |
39 |
1 38
|
syl5bi |
|- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> ( z e. QQ -> z e. R ) ) |
40 |
39
|
ssrdv |
|- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> QQ C_ R ) |