Description: Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsubcl | |- ( ( A e. QQ /\ B e. QQ ) -> ( A - B ) e. QQ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qcn | |- ( A e. QQ -> A e. CC ) |
|
| 2 | qcn | |- ( B e. QQ -> B e. CC ) |
|
| 3 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. QQ /\ B e. QQ ) -> ( A + -u B ) = ( A - B ) ) |
| 5 | qnegcl | |- ( B e. QQ -> -u B e. QQ ) |
|
| 6 | qaddcl | |- ( ( A e. QQ /\ -u B e. QQ ) -> ( A + -u B ) e. QQ ) |
|
| 7 | 5 6 | sylan2 | |- ( ( A e. QQ /\ B e. QQ ) -> ( A + -u B ) e. QQ ) |
| 8 | 4 7 | eqeltrrd | |- ( ( A e. QQ /\ B e. QQ ) -> ( A - B ) e. QQ ) |