Description: A quotient of a compact space is compact. (Contributed by Mario Carneiro, 24-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | qtopcmp.1 | |- X = U. J |
|
Assertion | qtopcmp | |- ( ( J e. Comp /\ F Fn X ) -> ( J qTop F ) e. Comp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopcmp.1 | |- X = U. J |
|
2 | cmptop | |- ( J e. Comp -> J e. Top ) |
|
3 | eqid | |- U. ( J qTop F ) = U. ( J qTop F ) |
|
4 | 3 | cncmp | |- ( ( J e. Comp /\ F : X -onto-> U. ( J qTop F ) /\ F e. ( J Cn ( J qTop F ) ) ) -> ( J qTop F ) e. Comp ) |
5 | 1 2 4 | qtopcmplem | |- ( ( J e. Comp /\ F Fn X ) -> ( J qTop F ) e. Comp ) |