Metamath Proof Explorer


Theorem qtopcmp

Description: A quotient of a compact space is compact. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypothesis qtopcmp.1
|- X = U. J
Assertion qtopcmp
|- ( ( J e. Comp /\ F Fn X ) -> ( J qTop F ) e. Comp )

Proof

Step Hyp Ref Expression
1 qtopcmp.1
 |-  X = U. J
2 cmptop
 |-  ( J e. Comp -> J e. Top )
3 eqid
 |-  U. ( J qTop F ) = U. ( J qTop F )
4 3 cncmp
 |-  ( ( J e. Comp /\ F : X -onto-> U. ( J qTop F ) /\ F e. ( J Cn ( J qTop F ) ) ) -> ( J qTop F ) e. Comp )
5 1 2 4 qtopcmplem
 |-  ( ( J e. Comp /\ F Fn X ) -> ( J qTop F ) e. Comp )