| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtopcmp.1 |
|- X = U. J |
| 2 |
|
qtopcmplem.1 |
|- ( J e. A -> J e. Top ) |
| 3 |
|
qtopcmplem.2 |
|- ( ( J e. A /\ F : X -onto-> U. ( J qTop F ) /\ F e. ( J Cn ( J qTop F ) ) ) -> ( J qTop F ) e. A ) |
| 4 |
|
simpl |
|- ( ( J e. A /\ F Fn X ) -> J e. A ) |
| 5 |
|
simpr |
|- ( ( J e. A /\ F Fn X ) -> F Fn X ) |
| 6 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
| 7 |
5 6
|
sylib |
|- ( ( J e. A /\ F Fn X ) -> F : X -onto-> ran F ) |
| 8 |
1
|
qtopuni |
|- ( ( J e. Top /\ F : X -onto-> ran F ) -> ran F = U. ( J qTop F ) ) |
| 9 |
2 8
|
sylan |
|- ( ( J e. A /\ F : X -onto-> ran F ) -> ran F = U. ( J qTop F ) ) |
| 10 |
6 9
|
sylan2b |
|- ( ( J e. A /\ F Fn X ) -> ran F = U. ( J qTop F ) ) |
| 11 |
|
foeq3 |
|- ( ran F = U. ( J qTop F ) -> ( F : X -onto-> ran F <-> F : X -onto-> U. ( J qTop F ) ) ) |
| 12 |
10 11
|
syl |
|- ( ( J e. A /\ F Fn X ) -> ( F : X -onto-> ran F <-> F : X -onto-> U. ( J qTop F ) ) ) |
| 13 |
7 12
|
mpbid |
|- ( ( J e. A /\ F Fn X ) -> F : X -onto-> U. ( J qTop F ) ) |
| 14 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 15 |
2 14
|
sylib |
|- ( J e. A -> J e. ( TopOn ` X ) ) |
| 16 |
|
qtopid |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
| 17 |
15 16
|
sylan |
|- ( ( J e. A /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
| 18 |
4 13 17 3
|
syl3anc |
|- ( ( J e. A /\ F Fn X ) -> ( J qTop F ) e. A ) |