Step |
Hyp |
Ref |
Expression |
1 |
|
qtopf1.1 |
|- ( ph -> J e. ( TopOn ` X ) ) |
2 |
|
qtopf1.2 |
|- ( ph -> F : X -1-1-> Y ) |
3 |
|
f1fn |
|- ( F : X -1-1-> Y -> F Fn X ) |
4 |
2 3
|
syl |
|- ( ph -> F Fn X ) |
5 |
|
qtopid |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
6 |
1 4 5
|
syl2anc |
|- ( ph -> F e. ( J Cn ( J qTop F ) ) ) |
7 |
|
f1f1orn |
|- ( F : X -1-1-> Y -> F : X -1-1-onto-> ran F ) |
8 |
|
f1ocnv |
|- ( F : X -1-1-onto-> ran F -> `' F : ran F -1-1-onto-> X ) |
9 |
|
f1of |
|- ( `' F : ran F -1-1-onto-> X -> `' F : ran F --> X ) |
10 |
2 7 8 9
|
4syl |
|- ( ph -> `' F : ran F --> X ) |
11 |
|
imacnvcnv |
|- ( `' `' F " x ) = ( F " x ) |
12 |
|
imassrn |
|- ( F " x ) C_ ran F |
13 |
12
|
a1i |
|- ( ( ph /\ x e. J ) -> ( F " x ) C_ ran F ) |
14 |
2
|
adantr |
|- ( ( ph /\ x e. J ) -> F : X -1-1-> Y ) |
15 |
|
toponss |
|- ( ( J e. ( TopOn ` X ) /\ x e. J ) -> x C_ X ) |
16 |
1 15
|
sylan |
|- ( ( ph /\ x e. J ) -> x C_ X ) |
17 |
|
f1imacnv |
|- ( ( F : X -1-1-> Y /\ x C_ X ) -> ( `' F " ( F " x ) ) = x ) |
18 |
14 16 17
|
syl2anc |
|- ( ( ph /\ x e. J ) -> ( `' F " ( F " x ) ) = x ) |
19 |
|
simpr |
|- ( ( ph /\ x e. J ) -> x e. J ) |
20 |
18 19
|
eqeltrd |
|- ( ( ph /\ x e. J ) -> ( `' F " ( F " x ) ) e. J ) |
21 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
22 |
4 21
|
sylib |
|- ( ph -> F : X -onto-> ran F ) |
23 |
|
elqtop3 |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( ( F " x ) e. ( J qTop F ) <-> ( ( F " x ) C_ ran F /\ ( `' F " ( F " x ) ) e. J ) ) ) |
24 |
1 22 23
|
syl2anc |
|- ( ph -> ( ( F " x ) e. ( J qTop F ) <-> ( ( F " x ) C_ ran F /\ ( `' F " ( F " x ) ) e. J ) ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ x e. J ) -> ( ( F " x ) e. ( J qTop F ) <-> ( ( F " x ) C_ ran F /\ ( `' F " ( F " x ) ) e. J ) ) ) |
26 |
13 20 25
|
mpbir2and |
|- ( ( ph /\ x e. J ) -> ( F " x ) e. ( J qTop F ) ) |
27 |
11 26
|
eqeltrid |
|- ( ( ph /\ x e. J ) -> ( `' `' F " x ) e. ( J qTop F ) ) |
28 |
27
|
ralrimiva |
|- ( ph -> A. x e. J ( `' `' F " x ) e. ( J qTop F ) ) |
29 |
|
qtoptopon |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
30 |
1 22 29
|
syl2anc |
|- ( ph -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
31 |
|
iscn |
|- ( ( ( J qTop F ) e. ( TopOn ` ran F ) /\ J e. ( TopOn ` X ) ) -> ( `' F e. ( ( J qTop F ) Cn J ) <-> ( `' F : ran F --> X /\ A. x e. J ( `' `' F " x ) e. ( J qTop F ) ) ) ) |
32 |
30 1 31
|
syl2anc |
|- ( ph -> ( `' F e. ( ( J qTop F ) Cn J ) <-> ( `' F : ran F --> X /\ A. x e. J ( `' `' F " x ) e. ( J qTop F ) ) ) ) |
33 |
10 28 32
|
mpbir2and |
|- ( ph -> `' F e. ( ( J qTop F ) Cn J ) ) |
34 |
|
ishmeo |
|- ( F e. ( J Homeo ( J qTop F ) ) <-> ( F e. ( J Cn ( J qTop F ) ) /\ `' F e. ( ( J qTop F ) Cn J ) ) ) |
35 |
6 33 34
|
sylanbrc |
|- ( ph -> F e. ( J Homeo ( J qTop F ) ) ) |