Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F Fn X ) |
2 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
3 |
1 2
|
sylib |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F : X -onto-> ran F ) |
4 |
|
fof |
|- ( F : X -onto-> ran F -> F : X --> ran F ) |
5 |
3 4
|
syl |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F : X --> ran F ) |
6 |
|
elqtop3 |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) ) |
7 |
3 6
|
syldan |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) ) |
8 |
7
|
simplbda |
|- ( ( ( J e. ( TopOn ` X ) /\ F Fn X ) /\ x e. ( J qTop F ) ) -> ( `' F " x ) e. J ) |
9 |
8
|
ralrimiva |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> A. x e. ( J qTop F ) ( `' F " x ) e. J ) |
10 |
|
qtoptopon |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
11 |
3 10
|
syldan |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
12 |
|
iscn |
|- ( ( J e. ( TopOn ` X ) /\ ( J qTop F ) e. ( TopOn ` ran F ) ) -> ( F e. ( J Cn ( J qTop F ) ) <-> ( F : X --> ran F /\ A. x e. ( J qTop F ) ( `' F " x ) e. J ) ) ) |
13 |
11 12
|
syldan |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> ( F e. ( J Cn ( J qTop F ) ) <-> ( F : X --> ran F /\ A. x e. ( J qTop F ) ( `' F " x ) e. J ) ) ) |
14 |
5 9 13
|
mpbir2and |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |