Metamath Proof Explorer


Theorem qtopkgen

Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis qtopcmp.1
|- X = U. J
Assertion qtopkgen
|- ( ( J e. ran kGen /\ F Fn X ) -> ( J qTop F ) e. ran kGen )

Proof

Step Hyp Ref Expression
1 qtopcmp.1
 |-  X = U. J
2 kgentop
 |-  ( J e. ran kGen -> J e. Top )
3 1 qtoptop
 |-  ( ( J e. Top /\ F Fn X ) -> ( J qTop F ) e. Top )
4 2 3 sylan
 |-  ( ( J e. ran kGen /\ F Fn X ) -> ( J qTop F ) e. Top )
5 elssuni
 |-  ( x e. ( kGen ` ( J qTop F ) ) -> x C_ U. ( kGen ` ( J qTop F ) ) )
6 5 adantl
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ U. ( kGen ` ( J qTop F ) ) )
7 4 adantr
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( J qTop F ) e. Top )
8 eqid
 |-  U. ( J qTop F ) = U. ( J qTop F )
9 8 kgenuni
 |-  ( ( J qTop F ) e. Top -> U. ( J qTop F ) = U. ( kGen ` ( J qTop F ) ) )
10 7 9 syl
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> U. ( J qTop F ) = U. ( kGen ` ( J qTop F ) ) )
11 6 10 sseqtrrd
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ U. ( J qTop F ) )
12 simpll
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. ran kGen )
13 12 2 syl
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. Top )
14 simplr
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F Fn X )
15 dffn4
 |-  ( F Fn X <-> F : X -onto-> ran F )
16 14 15 sylib
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F : X -onto-> ran F )
17 1 qtopuni
 |-  ( ( J e. Top /\ F : X -onto-> ran F ) -> ran F = U. ( J qTop F ) )
18 13 16 17 syl2anc
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ran F = U. ( J qTop F ) )
19 11 18 sseqtrrd
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ ran F )
20 1 toptopon
 |-  ( J e. Top <-> J e. ( TopOn ` X ) )
21 13 20 sylib
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. ( TopOn ` X ) )
22 qtopid
 |-  ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) )
23 21 14 22 syl2anc
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F e. ( J Cn ( J qTop F ) ) )
24 kgencn3
 |-  ( ( J e. ran kGen /\ ( J qTop F ) e. Top ) -> ( J Cn ( J qTop F ) ) = ( J Cn ( kGen ` ( J qTop F ) ) ) )
25 12 7 24 syl2anc
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( J Cn ( J qTop F ) ) = ( J Cn ( kGen ` ( J qTop F ) ) ) )
26 23 25 eleqtrd
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F e. ( J Cn ( kGen ` ( J qTop F ) ) ) )
27 cnima
 |-  ( ( F e. ( J Cn ( kGen ` ( J qTop F ) ) ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( `' F " x ) e. J )
28 26 27 sylancom
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( `' F " x ) e. J )
29 1 elqtop2
 |-  ( ( J e. ran kGen /\ F : X -onto-> ran F ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) )
30 12 16 29 syl2anc
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) )
31 19 28 30 mpbir2and
 |-  ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x e. ( J qTop F ) )
32 31 ex
 |-  ( ( J e. ran kGen /\ F Fn X ) -> ( x e. ( kGen ` ( J qTop F ) ) -> x e. ( J qTop F ) ) )
33 32 ssrdv
 |-  ( ( J e. ran kGen /\ F Fn X ) -> ( kGen ` ( J qTop F ) ) C_ ( J qTop F ) )
34 iskgen2
 |-  ( ( J qTop F ) e. ran kGen <-> ( ( J qTop F ) e. Top /\ ( kGen ` ( J qTop F ) ) C_ ( J qTop F ) ) )
35 4 33 34 sylanbrc
 |-  ( ( J e. ran kGen /\ F Fn X ) -> ( J qTop F ) e. ran kGen )