Step |
Hyp |
Ref |
Expression |
1 |
|
qtopcmp.1 |
|- X = U. J |
2 |
|
kgentop |
|- ( J e. ran kGen -> J e. Top ) |
3 |
1
|
qtoptop |
|- ( ( J e. Top /\ F Fn X ) -> ( J qTop F ) e. Top ) |
4 |
2 3
|
sylan |
|- ( ( J e. ran kGen /\ F Fn X ) -> ( J qTop F ) e. Top ) |
5 |
|
elssuni |
|- ( x e. ( kGen ` ( J qTop F ) ) -> x C_ U. ( kGen ` ( J qTop F ) ) ) |
6 |
5
|
adantl |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ U. ( kGen ` ( J qTop F ) ) ) |
7 |
4
|
adantr |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( J qTop F ) e. Top ) |
8 |
|
eqid |
|- U. ( J qTop F ) = U. ( J qTop F ) |
9 |
8
|
kgenuni |
|- ( ( J qTop F ) e. Top -> U. ( J qTop F ) = U. ( kGen ` ( J qTop F ) ) ) |
10 |
7 9
|
syl |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> U. ( J qTop F ) = U. ( kGen ` ( J qTop F ) ) ) |
11 |
6 10
|
sseqtrrd |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ U. ( J qTop F ) ) |
12 |
|
simpll |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. ran kGen ) |
13 |
12 2
|
syl |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. Top ) |
14 |
|
simplr |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F Fn X ) |
15 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
16 |
14 15
|
sylib |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F : X -onto-> ran F ) |
17 |
1
|
qtopuni |
|- ( ( J e. Top /\ F : X -onto-> ran F ) -> ran F = U. ( J qTop F ) ) |
18 |
13 16 17
|
syl2anc |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ran F = U. ( J qTop F ) ) |
19 |
11 18
|
sseqtrrd |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x C_ ran F ) |
20 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
21 |
13 20
|
sylib |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> J e. ( TopOn ` X ) ) |
22 |
|
qtopid |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
23 |
21 14 22
|
syl2anc |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F e. ( J Cn ( J qTop F ) ) ) |
24 |
|
kgencn3 |
|- ( ( J e. ran kGen /\ ( J qTop F ) e. Top ) -> ( J Cn ( J qTop F ) ) = ( J Cn ( kGen ` ( J qTop F ) ) ) ) |
25 |
12 7 24
|
syl2anc |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( J Cn ( J qTop F ) ) = ( J Cn ( kGen ` ( J qTop F ) ) ) ) |
26 |
23 25
|
eleqtrd |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> F e. ( J Cn ( kGen ` ( J qTop F ) ) ) ) |
27 |
|
cnima |
|- ( ( F e. ( J Cn ( kGen ` ( J qTop F ) ) ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( `' F " x ) e. J ) |
28 |
26 27
|
sylancom |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( `' F " x ) e. J ) |
29 |
1
|
elqtop2 |
|- ( ( J e. ran kGen /\ F : X -onto-> ran F ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) ) |
30 |
12 16 29
|
syl2anc |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> ( x e. ( J qTop F ) <-> ( x C_ ran F /\ ( `' F " x ) e. J ) ) ) |
31 |
19 28 30
|
mpbir2and |
|- ( ( ( J e. ran kGen /\ F Fn X ) /\ x e. ( kGen ` ( J qTop F ) ) ) -> x e. ( J qTop F ) ) |
32 |
31
|
ex |
|- ( ( J e. ran kGen /\ F Fn X ) -> ( x e. ( kGen ` ( J qTop F ) ) -> x e. ( J qTop F ) ) ) |
33 |
32
|
ssrdv |
|- ( ( J e. ran kGen /\ F Fn X ) -> ( kGen ` ( J qTop F ) ) C_ ( J qTop F ) ) |
34 |
|
iskgen2 |
|- ( ( J qTop F ) e. ran kGen <-> ( ( J qTop F ) e. Top /\ ( kGen ` ( J qTop F ) ) C_ ( J qTop F ) ) ) |
35 |
4 33 34
|
sylanbrc |
|- ( ( J e. ran kGen /\ F Fn X ) -> ( J qTop F ) e. ran kGen ) |