Step |
Hyp |
Ref |
Expression |
1 |
|
qtopval.1 |
|- X = U. J |
2 |
|
resima |
|- ( ( F |` X ) " X ) = ( F " X ) |
3 |
2
|
pweqi |
|- ~P ( ( F |` X ) " X ) = ~P ( F " X ) |
4 |
3
|
rabeqi |
|- { s e. ~P ( ( F |` X ) " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } = { s e. ~P ( F " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } |
5 |
|
residm |
|- ( ( F |` X ) |` X ) = ( F |` X ) |
6 |
5
|
cnveqi |
|- `' ( ( F |` X ) |` X ) = `' ( F |` X ) |
7 |
6
|
imaeq1i |
|- ( `' ( ( F |` X ) |` X ) " s ) = ( `' ( F |` X ) " s ) |
8 |
|
cnvresima |
|- ( `' ( ( F |` X ) |` X ) " s ) = ( ( `' ( F |` X ) " s ) i^i X ) |
9 |
|
cnvresima |
|- ( `' ( F |` X ) " s ) = ( ( `' F " s ) i^i X ) |
10 |
7 8 9
|
3eqtr3i |
|- ( ( `' ( F |` X ) " s ) i^i X ) = ( ( `' F " s ) i^i X ) |
11 |
10
|
eleq1i |
|- ( ( ( `' ( F |` X ) " s ) i^i X ) e. J <-> ( ( `' F " s ) i^i X ) e. J ) |
12 |
11
|
rabbii |
|- { s e. ~P ( F " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } |
13 |
4 12
|
eqtr2i |
|- { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } = { s e. ~P ( ( F |` X ) " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } |
14 |
1
|
qtopval |
|- ( ( J e. _V /\ F e. V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
15 |
|
resexg |
|- ( F e. V -> ( F |` X ) e. _V ) |
16 |
1
|
qtopval |
|- ( ( J e. _V /\ ( F |` X ) e. _V ) -> ( J qTop ( F |` X ) ) = { s e. ~P ( ( F |` X ) " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } ) |
17 |
15 16
|
sylan2 |
|- ( ( J e. _V /\ F e. V ) -> ( J qTop ( F |` X ) ) = { s e. ~P ( ( F |` X ) " X ) | ( ( `' ( F |` X ) " s ) i^i X ) e. J } ) |
18 |
13 14 17
|
3eqtr4a |
|- ( ( J e. _V /\ F e. V ) -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) |
19 |
18
|
expcom |
|- ( F e. V -> ( J e. _V -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) ) |
20 |
|
df-qtop |
|- qTop = ( j e. _V , f e. _V |-> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } ) |
21 |
20
|
reldmmpo |
|- Rel dom qTop |
22 |
21
|
ovprc1 |
|- ( -. J e. _V -> ( J qTop F ) = (/) ) |
23 |
21
|
ovprc1 |
|- ( -. J e. _V -> ( J qTop ( F |` X ) ) = (/) ) |
24 |
22 23
|
eqtr4d |
|- ( -. J e. _V -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) |
25 |
19 24
|
pm2.61d1 |
|- ( F e. V -> ( J qTop F ) = ( J qTop ( F |` X ) ) ) |