Step |
Hyp |
Ref |
Expression |
1 |
|
qtoprest.2 |
|- ( ph -> J e. ( TopOn ` X ) ) |
2 |
|
qtoprest.3 |
|- ( ph -> F : X -onto-> Y ) |
3 |
|
qtoprest.4 |
|- ( ph -> U C_ Y ) |
4 |
|
qtoprest.5 |
|- ( ph -> A = ( `' F " U ) ) |
5 |
|
qtoprest.6 |
|- ( ph -> ( A e. J \/ A e. ( Clsd ` J ) ) ) |
6 |
|
fofn |
|- ( F : X -onto-> Y -> F Fn X ) |
7 |
2 6
|
syl |
|- ( ph -> F Fn X ) |
8 |
|
qtopid |
|- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
9 |
1 7 8
|
syl2anc |
|- ( ph -> F e. ( J Cn ( J qTop F ) ) ) |
10 |
|
cnvimass |
|- ( `' F " U ) C_ dom F |
11 |
7
|
fndmd |
|- ( ph -> dom F = X ) |
12 |
10 11
|
sseqtrid |
|- ( ph -> ( `' F " U ) C_ X ) |
13 |
4 12
|
eqsstrd |
|- ( ph -> A C_ X ) |
14 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
15 |
1 14
|
syl |
|- ( ph -> X = U. J ) |
16 |
13 15
|
sseqtrd |
|- ( ph -> A C_ U. J ) |
17 |
|
eqid |
|- U. J = U. J |
18 |
17
|
cnrest |
|- ( ( F e. ( J Cn ( J qTop F ) ) /\ A C_ U. J ) -> ( F |` A ) e. ( ( J |`t A ) Cn ( J qTop F ) ) ) |
19 |
9 16 18
|
syl2anc |
|- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn ( J qTop F ) ) ) |
20 |
|
qtoptopon |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( J qTop F ) e. ( TopOn ` Y ) ) |
21 |
1 2 20
|
syl2anc |
|- ( ph -> ( J qTop F ) e. ( TopOn ` Y ) ) |
22 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
23 |
4
|
imaeq2d |
|- ( ph -> ( F " A ) = ( F " ( `' F " U ) ) ) |
24 |
|
foimacnv |
|- ( ( F : X -onto-> Y /\ U C_ Y ) -> ( F " ( `' F " U ) ) = U ) |
25 |
2 3 24
|
syl2anc |
|- ( ph -> ( F " ( `' F " U ) ) = U ) |
26 |
23 25
|
eqtrd |
|- ( ph -> ( F " A ) = U ) |
27 |
22 26
|
eqtr3id |
|- ( ph -> ran ( F |` A ) = U ) |
28 |
|
eqimss |
|- ( ran ( F |` A ) = U -> ran ( F |` A ) C_ U ) |
29 |
27 28
|
syl |
|- ( ph -> ran ( F |` A ) C_ U ) |
30 |
|
cnrest2 |
|- ( ( ( J qTop F ) e. ( TopOn ` Y ) /\ ran ( F |` A ) C_ U /\ U C_ Y ) -> ( ( F |` A ) e. ( ( J |`t A ) Cn ( J qTop F ) ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( ( J qTop F ) |`t U ) ) ) ) |
31 |
21 29 3 30
|
syl3anc |
|- ( ph -> ( ( F |` A ) e. ( ( J |`t A ) Cn ( J qTop F ) ) <-> ( F |` A ) e. ( ( J |`t A ) Cn ( ( J qTop F ) |`t U ) ) ) ) |
32 |
19 31
|
mpbid |
|- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn ( ( J qTop F ) |`t U ) ) ) |
33 |
|
resttopon |
|- ( ( ( J qTop F ) e. ( TopOn ` Y ) /\ U C_ Y ) -> ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) ) |
34 |
21 3 33
|
syl2anc |
|- ( ph -> ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) ) |
35 |
|
qtopss |
|- ( ( ( F |` A ) e. ( ( J |`t A ) Cn ( ( J qTop F ) |`t U ) ) /\ ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) /\ ran ( F |` A ) = U ) -> ( ( J qTop F ) |`t U ) C_ ( ( J |`t A ) qTop ( F |` A ) ) ) |
36 |
32 34 27 35
|
syl3anc |
|- ( ph -> ( ( J qTop F ) |`t U ) C_ ( ( J |`t A ) qTop ( F |` A ) ) ) |
37 |
|
resttopon |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
38 |
1 13 37
|
syl2anc |
|- ( ph -> ( J |`t A ) e. ( TopOn ` A ) ) |
39 |
|
fnfun |
|- ( F Fn X -> Fun F ) |
40 |
7 39
|
syl |
|- ( ph -> Fun F ) |
41 |
13 11
|
sseqtrrd |
|- ( ph -> A C_ dom F ) |
42 |
|
fores |
|- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |
43 |
40 41 42
|
syl2anc |
|- ( ph -> ( F |` A ) : A -onto-> ( F " A ) ) |
44 |
|
foeq3 |
|- ( ( F " A ) = U -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U ) ) |
45 |
26 44
|
syl |
|- ( ph -> ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) : A -onto-> U ) ) |
46 |
43 45
|
mpbid |
|- ( ph -> ( F |` A ) : A -onto-> U ) |
47 |
|
elqtop3 |
|- ( ( ( J |`t A ) e. ( TopOn ` A ) /\ ( F |` A ) : A -onto-> U ) -> ( x e. ( ( J |`t A ) qTop ( F |` A ) ) <-> ( x C_ U /\ ( `' ( F |` A ) " x ) e. ( J |`t A ) ) ) ) |
48 |
38 46 47
|
syl2anc |
|- ( ph -> ( x e. ( ( J |`t A ) qTop ( F |` A ) ) <-> ( x C_ U /\ ( `' ( F |` A ) " x ) e. ( J |`t A ) ) ) ) |
49 |
|
cnvresima |
|- ( `' ( F |` A ) " x ) = ( ( `' F " x ) i^i A ) |
50 |
|
imass2 |
|- ( x C_ U -> ( `' F " x ) C_ ( `' F " U ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ x C_ U ) -> ( `' F " x ) C_ ( `' F " U ) ) |
52 |
4
|
adantr |
|- ( ( ph /\ x C_ U ) -> A = ( `' F " U ) ) |
53 |
51 52
|
sseqtrrd |
|- ( ( ph /\ x C_ U ) -> ( `' F " x ) C_ A ) |
54 |
|
df-ss |
|- ( ( `' F " x ) C_ A <-> ( ( `' F " x ) i^i A ) = ( `' F " x ) ) |
55 |
53 54
|
sylib |
|- ( ( ph /\ x C_ U ) -> ( ( `' F " x ) i^i A ) = ( `' F " x ) ) |
56 |
49 55
|
eqtrid |
|- ( ( ph /\ x C_ U ) -> ( `' ( F |` A ) " x ) = ( `' F " x ) ) |
57 |
56
|
eleq1d |
|- ( ( ph /\ x C_ U ) -> ( ( `' ( F |` A ) " x ) e. ( J |`t A ) <-> ( `' F " x ) e. ( J |`t A ) ) ) |
58 |
|
simplrl |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> x C_ U ) |
59 |
|
df-ss |
|- ( x C_ U <-> ( x i^i U ) = x ) |
60 |
58 59
|
sylib |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( x i^i U ) = x ) |
61 |
|
topontop |
|- ( ( J qTop F ) e. ( TopOn ` Y ) -> ( J qTop F ) e. Top ) |
62 |
21 61
|
syl |
|- ( ph -> ( J qTop F ) e. Top ) |
63 |
62
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( J qTop F ) e. Top ) |
64 |
|
toponmax |
|- ( J e. ( TopOn ` X ) -> X e. J ) |
65 |
1 64
|
syl |
|- ( ph -> X e. J ) |
66 |
|
fornex |
|- ( X e. J -> ( F : X -onto-> Y -> Y e. _V ) ) |
67 |
65 2 66
|
sylc |
|- ( ph -> Y e. _V ) |
68 |
67 3
|
ssexd |
|- ( ph -> U e. _V ) |
69 |
68
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> U e. _V ) |
70 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> U C_ Y ) |
71 |
58 70
|
sstrd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> x C_ Y ) |
72 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
73 |
1 72
|
syl |
|- ( ph -> J e. Top ) |
74 |
|
restopn2 |
|- ( ( J e. Top /\ A e. J ) -> ( ( `' F " x ) e. ( J |`t A ) <-> ( ( `' F " x ) e. J /\ ( `' F " x ) C_ A ) ) ) |
75 |
73 74
|
sylan |
|- ( ( ph /\ A e. J ) -> ( ( `' F " x ) e. ( J |`t A ) <-> ( ( `' F " x ) e. J /\ ( `' F " x ) C_ A ) ) ) |
76 |
75
|
simprbda |
|- ( ( ( ph /\ A e. J ) /\ ( `' F " x ) e. ( J |`t A ) ) -> ( `' F " x ) e. J ) |
77 |
76
|
adantrl |
|- ( ( ( ph /\ A e. J ) /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) -> ( `' F " x ) e. J ) |
78 |
77
|
an32s |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( `' F " x ) e. J ) |
79 |
|
elqtop3 |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( x e. ( J qTop F ) <-> ( x C_ Y /\ ( `' F " x ) e. J ) ) ) |
80 |
1 2 79
|
syl2anc |
|- ( ph -> ( x e. ( J qTop F ) <-> ( x C_ Y /\ ( `' F " x ) e. J ) ) ) |
81 |
80
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( x e. ( J qTop F ) <-> ( x C_ Y /\ ( `' F " x ) e. J ) ) ) |
82 |
71 78 81
|
mpbir2and |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> x e. ( J qTop F ) ) |
83 |
|
elrestr |
|- ( ( ( J qTop F ) e. Top /\ U e. _V /\ x e. ( J qTop F ) ) -> ( x i^i U ) e. ( ( J qTop F ) |`t U ) ) |
84 |
63 69 82 83
|
syl3anc |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> ( x i^i U ) e. ( ( J qTop F ) |`t U ) ) |
85 |
60 84
|
eqeltrrd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. J ) -> x e. ( ( J qTop F ) |`t U ) ) |
86 |
34
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) ) |
87 |
|
toponuni |
|- ( ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) -> U = U. ( ( J qTop F ) |`t U ) ) |
88 |
86 87
|
syl |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> U = U. ( ( J qTop F ) |`t U ) ) |
89 |
88
|
difeq1d |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) = ( U. ( ( J qTop F ) |`t U ) \ x ) ) |
90 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> U C_ Y ) |
91 |
21
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( J qTop F ) e. ( TopOn ` Y ) ) |
92 |
|
toponuni |
|- ( ( J qTop F ) e. ( TopOn ` Y ) -> Y = U. ( J qTop F ) ) |
93 |
91 92
|
syl |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> Y = U. ( J qTop F ) ) |
94 |
90 93
|
sseqtrd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> U C_ U. ( J qTop F ) ) |
95 |
90
|
ssdifssd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) C_ Y ) |
96 |
40
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> Fun F ) |
97 |
|
funcnvcnv |
|- ( Fun F -> Fun `' `' F ) |
98 |
|
imadif |
|- ( Fun `' `' F -> ( `' F " ( U \ x ) ) = ( ( `' F " U ) \ ( `' F " x ) ) ) |
99 |
96 97 98
|
3syl |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( `' F " ( U \ x ) ) = ( ( `' F " U ) \ ( `' F " x ) ) ) |
100 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> A = ( `' F " U ) ) |
101 |
100
|
difeq1d |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( A \ ( `' F " x ) ) = ( ( `' F " U ) \ ( `' F " x ) ) ) |
102 |
99 101
|
eqtr4d |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( `' F " ( U \ x ) ) = ( A \ ( `' F " x ) ) ) |
103 |
|
simpr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> A e. ( Clsd ` J ) ) |
104 |
38
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
105 |
|
toponuni |
|- ( ( J |`t A ) e. ( TopOn ` A ) -> A = U. ( J |`t A ) ) |
106 |
104 105
|
syl |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> A = U. ( J |`t A ) ) |
107 |
106
|
difeq1d |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( A \ ( `' F " x ) ) = ( U. ( J |`t A ) \ ( `' F " x ) ) ) |
108 |
|
topontop |
|- ( ( J |`t A ) e. ( TopOn ` A ) -> ( J |`t A ) e. Top ) |
109 |
104 108
|
syl |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( J |`t A ) e. Top ) |
110 |
|
simplrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( `' F " x ) e. ( J |`t A ) ) |
111 |
|
eqid |
|- U. ( J |`t A ) = U. ( J |`t A ) |
112 |
111
|
opncld |
|- ( ( ( J |`t A ) e. Top /\ ( `' F " x ) e. ( J |`t A ) ) -> ( U. ( J |`t A ) \ ( `' F " x ) ) e. ( Clsd ` ( J |`t A ) ) ) |
113 |
109 110 112
|
syl2anc |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U. ( J |`t A ) \ ( `' F " x ) ) e. ( Clsd ` ( J |`t A ) ) ) |
114 |
107 113
|
eqeltrd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( A \ ( `' F " x ) ) e. ( Clsd ` ( J |`t A ) ) ) |
115 |
|
restcldr |
|- ( ( A e. ( Clsd ` J ) /\ ( A \ ( `' F " x ) ) e. ( Clsd ` ( J |`t A ) ) ) -> ( A \ ( `' F " x ) ) e. ( Clsd ` J ) ) |
116 |
103 114 115
|
syl2anc |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( A \ ( `' F " x ) ) e. ( Clsd ` J ) ) |
117 |
102 116
|
eqeltrd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( `' F " ( U \ x ) ) e. ( Clsd ` J ) ) |
118 |
|
qtopcld |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> Y ) -> ( ( U \ x ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( U \ x ) C_ Y /\ ( `' F " ( U \ x ) ) e. ( Clsd ` J ) ) ) ) |
119 |
1 2 118
|
syl2anc |
|- ( ph -> ( ( U \ x ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( U \ x ) C_ Y /\ ( `' F " ( U \ x ) ) e. ( Clsd ` J ) ) ) ) |
120 |
119
|
ad2antrr |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( ( U \ x ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( U \ x ) C_ Y /\ ( `' F " ( U \ x ) ) e. ( Clsd ` J ) ) ) ) |
121 |
95 117 120
|
mpbir2and |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) e. ( Clsd ` ( J qTop F ) ) ) |
122 |
|
difssd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) C_ U ) |
123 |
|
eqid |
|- U. ( J qTop F ) = U. ( J qTop F ) |
124 |
123
|
restcldi |
|- ( ( U C_ U. ( J qTop F ) /\ ( U \ x ) e. ( Clsd ` ( J qTop F ) ) /\ ( U \ x ) C_ U ) -> ( U \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) |
125 |
94 121 122 124
|
syl3anc |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) |
126 |
89 125
|
eqeltrrd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( U. ( ( J qTop F ) |`t U ) \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) |
127 |
|
topontop |
|- ( ( ( J qTop F ) |`t U ) e. ( TopOn ` U ) -> ( ( J qTop F ) |`t U ) e. Top ) |
128 |
86 127
|
syl |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( ( J qTop F ) |`t U ) e. Top ) |
129 |
|
simplrl |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> x C_ U ) |
130 |
129 88
|
sseqtrd |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> x C_ U. ( ( J qTop F ) |`t U ) ) |
131 |
|
eqid |
|- U. ( ( J qTop F ) |`t U ) = U. ( ( J qTop F ) |`t U ) |
132 |
131
|
isopn2 |
|- ( ( ( ( J qTop F ) |`t U ) e. Top /\ x C_ U. ( ( J qTop F ) |`t U ) ) -> ( x e. ( ( J qTop F ) |`t U ) <-> ( U. ( ( J qTop F ) |`t U ) \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) ) |
133 |
128 130 132
|
syl2anc |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> ( x e. ( ( J qTop F ) |`t U ) <-> ( U. ( ( J qTop F ) |`t U ) \ x ) e. ( Clsd ` ( ( J qTop F ) |`t U ) ) ) ) |
134 |
126 133
|
mpbird |
|- ( ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) /\ A e. ( Clsd ` J ) ) -> x e. ( ( J qTop F ) |`t U ) ) |
135 |
5
|
adantr |
|- ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) -> ( A e. J \/ A e. ( Clsd ` J ) ) ) |
136 |
85 134 135
|
mpjaodan |
|- ( ( ph /\ ( x C_ U /\ ( `' F " x ) e. ( J |`t A ) ) ) -> x e. ( ( J qTop F ) |`t U ) ) |
137 |
136
|
expr |
|- ( ( ph /\ x C_ U ) -> ( ( `' F " x ) e. ( J |`t A ) -> x e. ( ( J qTop F ) |`t U ) ) ) |
138 |
57 137
|
sylbid |
|- ( ( ph /\ x C_ U ) -> ( ( `' ( F |` A ) " x ) e. ( J |`t A ) -> x e. ( ( J qTop F ) |`t U ) ) ) |
139 |
138
|
expimpd |
|- ( ph -> ( ( x C_ U /\ ( `' ( F |` A ) " x ) e. ( J |`t A ) ) -> x e. ( ( J qTop F ) |`t U ) ) ) |
140 |
48 139
|
sylbid |
|- ( ph -> ( x e. ( ( J |`t A ) qTop ( F |` A ) ) -> x e. ( ( J qTop F ) |`t U ) ) ) |
141 |
140
|
ssrdv |
|- ( ph -> ( ( J |`t A ) qTop ( F |` A ) ) C_ ( ( J qTop F ) |`t U ) ) |
142 |
36 141
|
eqssd |
|- ( ph -> ( ( J qTop F ) |`t U ) = ( ( J |`t A ) qTop ( F |` A ) ) ) |