Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtoptop.1 | |- X = U. J |
|
| Assertion | qtoptop | |- ( ( J e. Top /\ F Fn X ) -> ( J qTop F ) e. Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtoptop.1 | |- X = U. J |
|
| 2 | simpl | |- ( ( J e. Top /\ F Fn X ) -> J e. Top ) |
|
| 3 | id | |- ( F Fn X -> F Fn X ) |
|
| 4 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 5 | fnex | |- ( ( F Fn X /\ X e. J ) -> F e. _V ) |
|
| 6 | 3 4 5 | syl2anr | |- ( ( J e. Top /\ F Fn X ) -> F e. _V ) |
| 7 | fnfun | |- ( F Fn X -> Fun F ) |
|
| 8 | 7 | adantl | |- ( ( J e. Top /\ F Fn X ) -> Fun F ) |
| 9 | qtoptop2 | |- ( ( J e. Top /\ F e. _V /\ Fun F ) -> ( J qTop F ) e. Top ) |
|
| 10 | 2 6 8 9 | syl3anc | |- ( ( J e. Top /\ F Fn X ) -> ( J qTop F ) e. Top ) |