Metamath Proof Explorer


Theorem qtoptop

Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtoptop.1
|- X = U. J
Assertion qtoptop
|- ( ( J e. Top /\ F Fn X ) -> ( J qTop F ) e. Top )

Proof

Step Hyp Ref Expression
1 qtoptop.1
 |-  X = U. J
2 simpl
 |-  ( ( J e. Top /\ F Fn X ) -> J e. Top )
3 id
 |-  ( F Fn X -> F Fn X )
4 1 topopn
 |-  ( J e. Top -> X e. J )
5 fnex
 |-  ( ( F Fn X /\ X e. J ) -> F e. _V )
6 3 4 5 syl2anr
 |-  ( ( J e. Top /\ F Fn X ) -> F e. _V )
7 fnfun
 |-  ( F Fn X -> Fun F )
8 7 adantl
 |-  ( ( J e. Top /\ F Fn X ) -> Fun F )
9 qtoptop2
 |-  ( ( J e. Top /\ F e. _V /\ Fun F ) -> ( J qTop F ) e. Top )
10 2 6 8 9 syl3anc
 |-  ( ( J e. Top /\ F Fn X ) -> ( J qTop F ) e. Top )