Step |
Hyp |
Ref |
Expression |
1 |
|
qtopval.1 |
|- X = U. J |
2 |
|
elex |
|- ( J e. V -> J e. _V ) |
3 |
|
elex |
|- ( F e. W -> F e. _V ) |
4 |
|
imaexg |
|- ( F e. _V -> ( F " X ) e. _V ) |
5 |
|
pwexg |
|- ( ( F " X ) e. _V -> ~P ( F " X ) e. _V ) |
6 |
|
rabexg |
|- ( ~P ( F " X ) e. _V -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } e. _V ) |
7 |
4 5 6
|
3syl |
|- ( F e. _V -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } e. _V ) |
8 |
7
|
adantl |
|- ( ( J e. _V /\ F e. _V ) -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } e. _V ) |
9 |
|
simpr |
|- ( ( j = J /\ f = F ) -> f = F ) |
10 |
|
simpl |
|- ( ( j = J /\ f = F ) -> j = J ) |
11 |
10
|
unieqd |
|- ( ( j = J /\ f = F ) -> U. j = U. J ) |
12 |
11 1
|
eqtr4di |
|- ( ( j = J /\ f = F ) -> U. j = X ) |
13 |
9 12
|
imaeq12d |
|- ( ( j = J /\ f = F ) -> ( f " U. j ) = ( F " X ) ) |
14 |
13
|
pweqd |
|- ( ( j = J /\ f = F ) -> ~P ( f " U. j ) = ~P ( F " X ) ) |
15 |
9
|
cnveqd |
|- ( ( j = J /\ f = F ) -> `' f = `' F ) |
16 |
15
|
imaeq1d |
|- ( ( j = J /\ f = F ) -> ( `' f " s ) = ( `' F " s ) ) |
17 |
16 12
|
ineq12d |
|- ( ( j = J /\ f = F ) -> ( ( `' f " s ) i^i U. j ) = ( ( `' F " s ) i^i X ) ) |
18 |
17 10
|
eleq12d |
|- ( ( j = J /\ f = F ) -> ( ( ( `' f " s ) i^i U. j ) e. j <-> ( ( `' F " s ) i^i X ) e. J ) ) |
19 |
14 18
|
rabeqbidv |
|- ( ( j = J /\ f = F ) -> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
20 |
|
df-qtop |
|- qTop = ( j e. _V , f e. _V |-> { s e. ~P ( f " U. j ) | ( ( `' f " s ) i^i U. j ) e. j } ) |
21 |
19 20
|
ovmpoga |
|- ( ( J e. _V /\ F e. _V /\ { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } e. _V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
22 |
8 21
|
mpd3an3 |
|- ( ( J e. _V /\ F e. _V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
23 |
2 3 22
|
syl2an |
|- ( ( J e. V /\ F e. W ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |