| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qtopval.1 |  |-  X = U. J | 
						
							| 2 |  | simp1 |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> J e. V ) | 
						
							| 3 |  | fof |  |-  ( F : Z -onto-> Y -> F : Z --> Y ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> F : Z --> Y ) | 
						
							| 5 |  | uniexg |  |-  ( J e. V -> U. J e. _V ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> U. J e. _V ) | 
						
							| 7 | 1 6 | eqeltrid |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> X e. _V ) | 
						
							| 8 |  | simp3 |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Z C_ X ) | 
						
							| 9 | 7 8 | ssexd |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Z e. _V ) | 
						
							| 10 | 4 9 | fexd |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> F e. _V ) | 
						
							| 11 | 1 | qtopval |  |-  ( ( J e. V /\ F e. _V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) | 
						
							| 12 | 2 10 11 | syl2anc |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) | 
						
							| 13 |  | imassrn |  |-  ( F " X ) C_ ran F | 
						
							| 14 |  | forn |  |-  ( F : Z -onto-> Y -> ran F = Y ) | 
						
							| 15 | 14 | 3ad2ant2 |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ran F = Y ) | 
						
							| 16 | 13 15 | sseqtrid |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " X ) C_ Y ) | 
						
							| 17 |  | foima |  |-  ( F : Z -onto-> Y -> ( F " Z ) = Y ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " Z ) = Y ) | 
						
							| 19 |  | imass2 |  |-  ( Z C_ X -> ( F " Z ) C_ ( F " X ) ) | 
						
							| 20 | 8 19 | syl |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " Z ) C_ ( F " X ) ) | 
						
							| 21 | 18 20 | eqsstrrd |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Y C_ ( F " X ) ) | 
						
							| 22 | 16 21 | eqssd |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " X ) = Y ) | 
						
							| 23 | 22 | pweqd |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ~P ( F " X ) = ~P Y ) | 
						
							| 24 |  | cnvimass |  |-  ( `' F " s ) C_ dom F | 
						
							| 25 | 24 4 | fssdm |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( `' F " s ) C_ Z ) | 
						
							| 26 | 25 8 | sstrd |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( `' F " s ) C_ X ) | 
						
							| 27 |  | dfss2 |  |-  ( ( `' F " s ) C_ X <-> ( ( `' F " s ) i^i X ) = ( `' F " s ) ) | 
						
							| 28 | 26 27 | sylib |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( ( `' F " s ) i^i X ) = ( `' F " s ) ) | 
						
							| 29 | 28 | eleq1d |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( ( ( `' F " s ) i^i X ) e. J <-> ( `' F " s ) e. J ) ) | 
						
							| 30 | 23 29 | rabeqbidv |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } = { s e. ~P Y | ( `' F " s ) e. J } ) | 
						
							| 31 | 12 30 | eqtrd |  |-  ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( J qTop F ) = { s e. ~P Y | ( `' F " s ) e. J } ) |