Step |
Hyp |
Ref |
Expression |
1 |
|
qtopval.1 |
|- X = U. J |
2 |
|
simp1 |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> J e. V ) |
3 |
|
fof |
|- ( F : Z -onto-> Y -> F : Z --> Y ) |
4 |
3
|
3ad2ant2 |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> F : Z --> Y ) |
5 |
|
uniexg |
|- ( J e. V -> U. J e. _V ) |
6 |
5
|
3ad2ant1 |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> U. J e. _V ) |
7 |
1 6
|
eqeltrid |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> X e. _V ) |
8 |
|
simp3 |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Z C_ X ) |
9 |
7 8
|
ssexd |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Z e. _V ) |
10 |
4 9
|
fexd |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> F e. _V ) |
11 |
1
|
qtopval |
|- ( ( J e. V /\ F e. _V ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
12 |
2 10 11
|
syl2anc |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( J qTop F ) = { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } ) |
13 |
|
imassrn |
|- ( F " X ) C_ ran F |
14 |
|
forn |
|- ( F : Z -onto-> Y -> ran F = Y ) |
15 |
14
|
3ad2ant2 |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ran F = Y ) |
16 |
13 15
|
sseqtrid |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " X ) C_ Y ) |
17 |
|
foima |
|- ( F : Z -onto-> Y -> ( F " Z ) = Y ) |
18 |
17
|
3ad2ant2 |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " Z ) = Y ) |
19 |
|
imass2 |
|- ( Z C_ X -> ( F " Z ) C_ ( F " X ) ) |
20 |
8 19
|
syl |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " Z ) C_ ( F " X ) ) |
21 |
18 20
|
eqsstrrd |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> Y C_ ( F " X ) ) |
22 |
16 21
|
eqssd |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( F " X ) = Y ) |
23 |
22
|
pweqd |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ~P ( F " X ) = ~P Y ) |
24 |
|
cnvimass |
|- ( `' F " s ) C_ dom F |
25 |
24 4
|
fssdm |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( `' F " s ) C_ Z ) |
26 |
25 8
|
sstrd |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( `' F " s ) C_ X ) |
27 |
|
df-ss |
|- ( ( `' F " s ) C_ X <-> ( ( `' F " s ) i^i X ) = ( `' F " s ) ) |
28 |
26 27
|
sylib |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( ( `' F " s ) i^i X ) = ( `' F " s ) ) |
29 |
28
|
eleq1d |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( ( ( `' F " s ) i^i X ) e. J <-> ( `' F " s ) e. J ) ) |
30 |
23 29
|
rabeqbidv |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> { s e. ~P ( F " X ) | ( ( `' F " s ) i^i X ) e. J } = { s e. ~P Y | ( `' F " s ) e. J } ) |
31 |
12 30
|
eqtrd |
|- ( ( J e. V /\ F : Z -onto-> Y /\ Z C_ X ) -> ( J qTop F ) = { s e. ~P Y | ( `' F " s ) e. J } ) |