Step |
Hyp |
Ref |
Expression |
1 |
|
quad.a |
|- ( ph -> A e. CC ) |
2 |
|
quad.z |
|- ( ph -> A =/= 0 ) |
3 |
|
quad.b |
|- ( ph -> B e. CC ) |
4 |
|
quad.c |
|- ( ph -> C e. CC ) |
5 |
|
quad.x |
|- ( ph -> X e. CC ) |
6 |
|
quad.d |
|- ( ph -> D = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
7 |
3
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
8 |
|
4cn |
|- 4 e. CC |
9 |
1 4
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
10 |
|
mulcl |
|- ( ( 4 e. CC /\ ( A x. C ) e. CC ) -> ( 4 x. ( A x. C ) ) e. CC ) |
11 |
8 9 10
|
sylancr |
|- ( ph -> ( 4 x. ( A x. C ) ) e. CC ) |
12 |
7 11
|
subcld |
|- ( ph -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) e. CC ) |
13 |
6 12
|
eqeltrd |
|- ( ph -> D e. CC ) |
14 |
13
|
sqrtcld |
|- ( ph -> ( sqrt ` D ) e. CC ) |
15 |
13
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` D ) ^ 2 ) = D ) |
16 |
15 6
|
eqtrd |
|- ( ph -> ( ( sqrt ` D ) ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
17 |
1 2 3 4 5 14 16
|
quad2 |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0 <-> ( X = ( ( -u B + ( sqrt ` D ) ) / ( 2 x. A ) ) \/ X = ( ( -u B - ( sqrt ` D ) ) / ( 2 x. A ) ) ) ) ) |