Step |
Hyp |
Ref |
Expression |
1 |
|
quad.a |
|- ( ph -> A e. CC ) |
2 |
|
quad.z |
|- ( ph -> A =/= 0 ) |
3 |
|
quad.b |
|- ( ph -> B e. CC ) |
4 |
|
quad.c |
|- ( ph -> C e. CC ) |
5 |
|
quad.x |
|- ( ph -> X e. CC ) |
6 |
|
quad2.d |
|- ( ph -> D e. CC ) |
7 |
|
quad2.2 |
|- ( ph -> ( D ^ 2 ) = ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) |
8 |
|
2cn |
|- 2 e. CC |
9 |
|
mulcl |
|- ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) |
10 |
8 1 9
|
sylancr |
|- ( ph -> ( 2 x. A ) e. CC ) |
11 |
10 5
|
mulcld |
|- ( ph -> ( ( 2 x. A ) x. X ) e. CC ) |
12 |
11 3
|
addcld |
|- ( ph -> ( ( ( 2 x. A ) x. X ) + B ) e. CC ) |
13 |
12
|
sqcld |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) e. CC ) |
14 |
6
|
sqcld |
|- ( ph -> ( D ^ 2 ) e. CC ) |
15 |
13 14
|
subeq0ad |
|- ( ph -> ( ( ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) - ( D ^ 2 ) ) = 0 <-> ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) = ( D ^ 2 ) ) ) |
16 |
5
|
sqcld |
|- ( ph -> ( X ^ 2 ) e. CC ) |
17 |
1 16
|
mulcld |
|- ( ph -> ( A x. ( X ^ 2 ) ) e. CC ) |
18 |
3 5
|
mulcld |
|- ( ph -> ( B x. X ) e. CC ) |
19 |
18 4
|
addcld |
|- ( ph -> ( ( B x. X ) + C ) e. CC ) |
20 |
17 19
|
addcld |
|- ( ph -> ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) e. CC ) |
21 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
22 |
|
4cn |
|- 4 e. CC |
23 |
|
mulcl |
|- ( ( 4 e. CC /\ A e. CC ) -> ( 4 x. A ) e. CC ) |
24 |
22 1 23
|
sylancr |
|- ( ph -> ( 4 x. A ) e. CC ) |
25 |
22
|
a1i |
|- ( ph -> 4 e. CC ) |
26 |
|
4ne0 |
|- 4 =/= 0 |
27 |
26
|
a1i |
|- ( ph -> 4 =/= 0 ) |
28 |
25 1 27 2
|
mulne0d |
|- ( ph -> ( 4 x. A ) =/= 0 ) |
29 |
20 21 24 28
|
mulcand |
|- ( ph -> ( ( ( 4 x. A ) x. ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) ) = ( ( 4 x. A ) x. 0 ) <-> ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0 ) ) |
30 |
11
|
sqcld |
|- ( ph -> ( ( ( 2 x. A ) x. X ) ^ 2 ) e. CC ) |
31 |
11 3
|
mulcld |
|- ( ph -> ( ( ( 2 x. A ) x. X ) x. B ) e. CC ) |
32 |
|
mulcl |
|- ( ( 2 e. CC /\ ( ( ( 2 x. A ) x. X ) x. B ) e. CC ) -> ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) e. CC ) |
33 |
8 31 32
|
sylancr |
|- ( ph -> ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) e. CC ) |
34 |
1 4
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
35 |
|
mulcl |
|- ( ( 4 e. CC /\ ( A x. C ) e. CC ) -> ( 4 x. ( A x. C ) ) e. CC ) |
36 |
22 34 35
|
sylancr |
|- ( ph -> ( 4 x. ( A x. C ) ) e. CC ) |
37 |
30 33 36
|
addassd |
|- ( ph -> ( ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) + ( 4 x. ( A x. C ) ) ) = ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) + ( 4 x. ( A x. C ) ) ) ) ) |
38 |
3
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
39 |
30 33
|
addcld |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) e. CC ) |
40 |
38 39 36
|
pnncand |
|- ( ph -> ( ( ( B ^ 2 ) + ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) ) - ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) = ( ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) + ( 4 x. ( A x. C ) ) ) ) |
41 |
10 5
|
sqmuld |
|- ( ph -> ( ( ( 2 x. A ) x. X ) ^ 2 ) = ( ( ( 2 x. A ) ^ 2 ) x. ( X ^ 2 ) ) ) |
42 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
43 |
42
|
a1i |
|- ( ph -> ( 2 ^ 2 ) = 4 ) |
44 |
1
|
sqvald |
|- ( ph -> ( A ^ 2 ) = ( A x. A ) ) |
45 |
43 44
|
oveq12d |
|- ( ph -> ( ( 2 ^ 2 ) x. ( A ^ 2 ) ) = ( 4 x. ( A x. A ) ) ) |
46 |
|
sqmul |
|- ( ( 2 e. CC /\ A e. CC ) -> ( ( 2 x. A ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( A ^ 2 ) ) ) |
47 |
8 1 46
|
sylancr |
|- ( ph -> ( ( 2 x. A ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( A ^ 2 ) ) ) |
48 |
25 1 1
|
mulassd |
|- ( ph -> ( ( 4 x. A ) x. A ) = ( 4 x. ( A x. A ) ) ) |
49 |
45 47 48
|
3eqtr4d |
|- ( ph -> ( ( 2 x. A ) ^ 2 ) = ( ( 4 x. A ) x. A ) ) |
50 |
49
|
oveq1d |
|- ( ph -> ( ( ( 2 x. A ) ^ 2 ) x. ( X ^ 2 ) ) = ( ( ( 4 x. A ) x. A ) x. ( X ^ 2 ) ) ) |
51 |
24 1 16
|
mulassd |
|- ( ph -> ( ( ( 4 x. A ) x. A ) x. ( X ^ 2 ) ) = ( ( 4 x. A ) x. ( A x. ( X ^ 2 ) ) ) ) |
52 |
41 50 51
|
3eqtrrd |
|- ( ph -> ( ( 4 x. A ) x. ( A x. ( X ^ 2 ) ) ) = ( ( ( 2 x. A ) x. X ) ^ 2 ) ) |
53 |
24 18 4
|
adddid |
|- ( ph -> ( ( 4 x. A ) x. ( ( B x. X ) + C ) ) = ( ( ( 4 x. A ) x. ( B x. X ) ) + ( ( 4 x. A ) x. C ) ) ) |
54 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
55 |
54
|
oveq1i |
|- ( ( 2 x. 2 ) x. A ) = ( 4 x. A ) |
56 |
8
|
a1i |
|- ( ph -> 2 e. CC ) |
57 |
56 56 1
|
mulassd |
|- ( ph -> ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) ) ) |
58 |
55 57
|
eqtr3id |
|- ( ph -> ( 4 x. A ) = ( 2 x. ( 2 x. A ) ) ) |
59 |
58
|
oveq1d |
|- ( ph -> ( ( 4 x. A ) x. B ) = ( ( 2 x. ( 2 x. A ) ) x. B ) ) |
60 |
56 10 3
|
mulassd |
|- ( ph -> ( ( 2 x. ( 2 x. A ) ) x. B ) = ( 2 x. ( ( 2 x. A ) x. B ) ) ) |
61 |
59 60
|
eqtrd |
|- ( ph -> ( ( 4 x. A ) x. B ) = ( 2 x. ( ( 2 x. A ) x. B ) ) ) |
62 |
61
|
oveq1d |
|- ( ph -> ( ( ( 4 x. A ) x. B ) x. X ) = ( ( 2 x. ( ( 2 x. A ) x. B ) ) x. X ) ) |
63 |
10 3
|
mulcld |
|- ( ph -> ( ( 2 x. A ) x. B ) e. CC ) |
64 |
56 63 5
|
mulassd |
|- ( ph -> ( ( 2 x. ( ( 2 x. A ) x. B ) ) x. X ) = ( 2 x. ( ( ( 2 x. A ) x. B ) x. X ) ) ) |
65 |
62 64
|
eqtrd |
|- ( ph -> ( ( ( 4 x. A ) x. B ) x. X ) = ( 2 x. ( ( ( 2 x. A ) x. B ) x. X ) ) ) |
66 |
24 3 5
|
mulassd |
|- ( ph -> ( ( ( 4 x. A ) x. B ) x. X ) = ( ( 4 x. A ) x. ( B x. X ) ) ) |
67 |
10 3 5
|
mul32d |
|- ( ph -> ( ( ( 2 x. A ) x. B ) x. X ) = ( ( ( 2 x. A ) x. X ) x. B ) ) |
68 |
67
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( 2 x. A ) x. B ) x. X ) ) = ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) |
69 |
65 66 68
|
3eqtr3d |
|- ( ph -> ( ( 4 x. A ) x. ( B x. X ) ) = ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) |
70 |
25 1 4
|
mulassd |
|- ( ph -> ( ( 4 x. A ) x. C ) = ( 4 x. ( A x. C ) ) ) |
71 |
69 70
|
oveq12d |
|- ( ph -> ( ( ( 4 x. A ) x. ( B x. X ) ) + ( ( 4 x. A ) x. C ) ) = ( ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) + ( 4 x. ( A x. C ) ) ) ) |
72 |
53 71
|
eqtrd |
|- ( ph -> ( ( 4 x. A ) x. ( ( B x. X ) + C ) ) = ( ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) + ( 4 x. ( A x. C ) ) ) ) |
73 |
52 72
|
oveq12d |
|- ( ph -> ( ( ( 4 x. A ) x. ( A x. ( X ^ 2 ) ) ) + ( ( 4 x. A ) x. ( ( B x. X ) + C ) ) ) = ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) + ( 4 x. ( A x. C ) ) ) ) ) |
74 |
37 40 73
|
3eqtr4rd |
|- ( ph -> ( ( ( 4 x. A ) x. ( A x. ( X ^ 2 ) ) ) + ( ( 4 x. A ) x. ( ( B x. X ) + C ) ) ) = ( ( ( B ^ 2 ) + ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) ) - ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) |
75 |
24 17 19
|
adddid |
|- ( ph -> ( ( 4 x. A ) x. ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) ) = ( ( ( 4 x. A ) x. ( A x. ( X ^ 2 ) ) ) + ( ( 4 x. A ) x. ( ( B x. X ) + C ) ) ) ) |
76 |
|
binom2 |
|- ( ( ( ( 2 x. A ) x. X ) e. CC /\ B e. CC ) -> ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) = ( ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) + ( B ^ 2 ) ) ) |
77 |
11 3 76
|
syl2anc |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) = ( ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) + ( B ^ 2 ) ) ) |
78 |
39 38 77
|
comraddd |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) = ( ( B ^ 2 ) + ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) ) ) |
79 |
78 7
|
oveq12d |
|- ( ph -> ( ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) - ( D ^ 2 ) ) = ( ( ( B ^ 2 ) + ( ( ( ( 2 x. A ) x. X ) ^ 2 ) + ( 2 x. ( ( ( 2 x. A ) x. X ) x. B ) ) ) ) - ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) ) ) |
80 |
74 75 79
|
3eqtr4d |
|- ( ph -> ( ( 4 x. A ) x. ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) ) = ( ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) - ( D ^ 2 ) ) ) |
81 |
24
|
mul01d |
|- ( ph -> ( ( 4 x. A ) x. 0 ) = 0 ) |
82 |
80 81
|
eqeq12d |
|- ( ph -> ( ( ( 4 x. A ) x. ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) ) = ( ( 4 x. A ) x. 0 ) <-> ( ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) - ( D ^ 2 ) ) = 0 ) ) |
83 |
29 82
|
bitr3d |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0 <-> ( ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) - ( D ^ 2 ) ) = 0 ) ) |
84 |
11 3
|
subnegd |
|- ( ph -> ( ( ( 2 x. A ) x. X ) - -u B ) = ( ( ( 2 x. A ) x. X ) + B ) ) |
85 |
84
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) - -u B ) ^ 2 ) = ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) ) |
86 |
85
|
eqeq1d |
|- ( ph -> ( ( ( ( ( 2 x. A ) x. X ) - -u B ) ^ 2 ) = ( D ^ 2 ) <-> ( ( ( ( 2 x. A ) x. X ) + B ) ^ 2 ) = ( D ^ 2 ) ) ) |
87 |
15 83 86
|
3bitr4d |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0 <-> ( ( ( ( 2 x. A ) x. X ) - -u B ) ^ 2 ) = ( D ^ 2 ) ) ) |
88 |
3
|
negcld |
|- ( ph -> -u B e. CC ) |
89 |
11 88
|
subcld |
|- ( ph -> ( ( ( 2 x. A ) x. X ) - -u B ) e. CC ) |
90 |
|
sqeqor |
|- ( ( ( ( ( 2 x. A ) x. X ) - -u B ) e. CC /\ D e. CC ) -> ( ( ( ( ( 2 x. A ) x. X ) - -u B ) ^ 2 ) = ( D ^ 2 ) <-> ( ( ( ( 2 x. A ) x. X ) - -u B ) = D \/ ( ( ( 2 x. A ) x. X ) - -u B ) = -u D ) ) ) |
91 |
89 6 90
|
syl2anc |
|- ( ph -> ( ( ( ( ( 2 x. A ) x. X ) - -u B ) ^ 2 ) = ( D ^ 2 ) <-> ( ( ( ( 2 x. A ) x. X ) - -u B ) = D \/ ( ( ( 2 x. A ) x. X ) - -u B ) = -u D ) ) ) |
92 |
11 88 6
|
subaddd |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) - -u B ) = D <-> ( -u B + D ) = ( ( 2 x. A ) x. X ) ) ) |
93 |
88 6
|
addcld |
|- ( ph -> ( -u B + D ) e. CC ) |
94 |
|
2ne0 |
|- 2 =/= 0 |
95 |
94
|
a1i |
|- ( ph -> 2 =/= 0 ) |
96 |
56 1 95 2
|
mulne0d |
|- ( ph -> ( 2 x. A ) =/= 0 ) |
97 |
93 10 5 96
|
divmuld |
|- ( ph -> ( ( ( -u B + D ) / ( 2 x. A ) ) = X <-> ( ( 2 x. A ) x. X ) = ( -u B + D ) ) ) |
98 |
|
eqcom |
|- ( X = ( ( -u B + D ) / ( 2 x. A ) ) <-> ( ( -u B + D ) / ( 2 x. A ) ) = X ) |
99 |
|
eqcom |
|- ( ( -u B + D ) = ( ( 2 x. A ) x. X ) <-> ( ( 2 x. A ) x. X ) = ( -u B + D ) ) |
100 |
97 98 99
|
3bitr4g |
|- ( ph -> ( X = ( ( -u B + D ) / ( 2 x. A ) ) <-> ( -u B + D ) = ( ( 2 x. A ) x. X ) ) ) |
101 |
92 100
|
bitr4d |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) - -u B ) = D <-> X = ( ( -u B + D ) / ( 2 x. A ) ) ) ) |
102 |
88 6
|
negsubd |
|- ( ph -> ( -u B + -u D ) = ( -u B - D ) ) |
103 |
102
|
eqeq1d |
|- ( ph -> ( ( -u B + -u D ) = ( ( 2 x. A ) x. X ) <-> ( -u B - D ) = ( ( 2 x. A ) x. X ) ) ) |
104 |
6
|
negcld |
|- ( ph -> -u D e. CC ) |
105 |
11 88 104
|
subaddd |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) - -u B ) = -u D <-> ( -u B + -u D ) = ( ( 2 x. A ) x. X ) ) ) |
106 |
88 6
|
subcld |
|- ( ph -> ( -u B - D ) e. CC ) |
107 |
106 10 5 96
|
divmuld |
|- ( ph -> ( ( ( -u B - D ) / ( 2 x. A ) ) = X <-> ( ( 2 x. A ) x. X ) = ( -u B - D ) ) ) |
108 |
|
eqcom |
|- ( X = ( ( -u B - D ) / ( 2 x. A ) ) <-> ( ( -u B - D ) / ( 2 x. A ) ) = X ) |
109 |
|
eqcom |
|- ( ( -u B - D ) = ( ( 2 x. A ) x. X ) <-> ( ( 2 x. A ) x. X ) = ( -u B - D ) ) |
110 |
107 108 109
|
3bitr4g |
|- ( ph -> ( X = ( ( -u B - D ) / ( 2 x. A ) ) <-> ( -u B - D ) = ( ( 2 x. A ) x. X ) ) ) |
111 |
103 105 110
|
3bitr4d |
|- ( ph -> ( ( ( ( 2 x. A ) x. X ) - -u B ) = -u D <-> X = ( ( -u B - D ) / ( 2 x. A ) ) ) ) |
112 |
101 111
|
orbi12d |
|- ( ph -> ( ( ( ( ( 2 x. A ) x. X ) - -u B ) = D \/ ( ( ( 2 x. A ) x. X ) - -u B ) = -u D ) <-> ( X = ( ( -u B + D ) / ( 2 x. A ) ) \/ X = ( ( -u B - D ) / ( 2 x. A ) ) ) ) ) |
113 |
87 91 112
|
3bitrd |
|- ( ph -> ( ( ( A x. ( X ^ 2 ) ) + ( ( B x. X ) + C ) ) = 0 <-> ( X = ( ( -u B + D ) / ( 2 x. A ) ) \/ X = ( ( -u B - D ) / ( 2 x. A ) ) ) ) ) |