Step |
Hyp |
Ref |
Expression |
1 |
|
quart.a |
|- ( ph -> A e. CC ) |
2 |
|
quart.b |
|- ( ph -> B e. CC ) |
3 |
|
quart.c |
|- ( ph -> C e. CC ) |
4 |
|
quart.d |
|- ( ph -> D e. CC ) |
5 |
|
quart.x |
|- ( ph -> X e. CC ) |
6 |
|
quart.e |
|- ( ph -> E = -u ( A / 4 ) ) |
7 |
|
quart.p |
|- ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) |
8 |
|
quart.q |
|- ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) |
9 |
|
quart.r |
|- ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
10 |
|
quart.u |
|- ( ph -> U = ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) ) |
11 |
|
quart.v |
|- ( ph -> V = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
12 |
|
quart.w |
|- ( ph -> W = ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ) |
13 |
|
quart.s |
|- ( ph -> S = ( ( sqrt ` M ) / 2 ) ) |
14 |
|
quart.m |
|- ( ph -> M = -u ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) ) |
15 |
|
quart.t |
|- ( ph -> T = ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ) |
16 |
|
quart.t0 |
|- ( ph -> T =/= 0 ) |
17 |
|
quart.m0 |
|- ( ph -> M =/= 0 ) |
18 |
|
quart.i |
|- ( ph -> I = ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) ) |
19 |
|
quart.j |
|- ( ph -> J = ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) ) |
20 |
6
|
oveq2d |
|- ( ph -> ( X - E ) = ( X - -u ( A / 4 ) ) ) |
21 |
|
4cn |
|- 4 e. CC |
22 |
21
|
a1i |
|- ( ph -> 4 e. CC ) |
23 |
|
4ne0 |
|- 4 =/= 0 |
24 |
23
|
a1i |
|- ( ph -> 4 =/= 0 ) |
25 |
1 22 24
|
divcld |
|- ( ph -> ( A / 4 ) e. CC ) |
26 |
5 25
|
subnegd |
|- ( ph -> ( X - -u ( A / 4 ) ) = ( X + ( A / 4 ) ) ) |
27 |
20 26
|
eqtrd |
|- ( ph -> ( X - E ) = ( X + ( A / 4 ) ) ) |
28 |
1 2 3 4 7 8 9 5 27
|
quart1 |
|- ( ph -> ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) = ( ( ( ( X - E ) ^ 4 ) + ( P x. ( ( X - E ) ^ 2 ) ) ) + ( ( Q x. ( X - E ) ) + R ) ) ) |
29 |
28
|
eqeq1d |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) = 0 <-> ( ( ( ( X - E ) ^ 4 ) + ( P x. ( ( X - E ) ^ 2 ) ) ) + ( ( Q x. ( X - E ) ) + R ) ) = 0 ) ) |
30 |
1 2 3 4 7 8 9
|
quart1cl |
|- ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) |
31 |
30
|
simp1d |
|- ( ph -> P e. CC ) |
32 |
30
|
simp2d |
|- ( ph -> Q e. CC ) |
33 |
25
|
negcld |
|- ( ph -> -u ( A / 4 ) e. CC ) |
34 |
6 33
|
eqeltrd |
|- ( ph -> E e. CC ) |
35 |
5 34
|
subcld |
|- ( ph -> ( X - E ) e. CC ) |
36 |
1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16
|
quartlem3 |
|- ( ph -> ( S e. CC /\ M e. CC /\ T e. CC ) ) |
37 |
36
|
simp1d |
|- ( ph -> S e. CC ) |
38 |
13
|
oveq2d |
|- ( ph -> ( 2 x. S ) = ( 2 x. ( ( sqrt ` M ) / 2 ) ) ) |
39 |
36
|
simp2d |
|- ( ph -> M e. CC ) |
40 |
39
|
sqrtcld |
|- ( ph -> ( sqrt ` M ) e. CC ) |
41 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
42 |
|
2ne0 |
|- 2 =/= 0 |
43 |
42
|
a1i |
|- ( ph -> 2 =/= 0 ) |
44 |
40 41 43
|
divcan2d |
|- ( ph -> ( 2 x. ( ( sqrt ` M ) / 2 ) ) = ( sqrt ` M ) ) |
45 |
38 44
|
eqtrd |
|- ( ph -> ( 2 x. S ) = ( sqrt ` M ) ) |
46 |
45
|
oveq1d |
|- ( ph -> ( ( 2 x. S ) ^ 2 ) = ( ( sqrt ` M ) ^ 2 ) ) |
47 |
39
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` M ) ^ 2 ) = M ) |
48 |
46 47
|
eqtr2d |
|- ( ph -> M = ( ( 2 x. S ) ^ 2 ) ) |
49 |
1 2 3 4 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
quartlem4 |
|- ( ph -> ( S =/= 0 /\ I e. CC /\ J e. CC ) ) |
50 |
49
|
simp2d |
|- ( ph -> I e. CC ) |
51 |
18
|
oveq1d |
|- ( ph -> ( I ^ 2 ) = ( ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) ^ 2 ) ) |
52 |
37
|
sqcld |
|- ( ph -> ( S ^ 2 ) e. CC ) |
53 |
52
|
negcld |
|- ( ph -> -u ( S ^ 2 ) e. CC ) |
54 |
31
|
halfcld |
|- ( ph -> ( P / 2 ) e. CC ) |
55 |
53 54
|
subcld |
|- ( ph -> ( -u ( S ^ 2 ) - ( P / 2 ) ) e. CC ) |
56 |
32 22 24
|
divcld |
|- ( ph -> ( Q / 4 ) e. CC ) |
57 |
49
|
simp1d |
|- ( ph -> S =/= 0 ) |
58 |
56 37 57
|
divcld |
|- ( ph -> ( ( Q / 4 ) / S ) e. CC ) |
59 |
55 58
|
addcld |
|- ( ph -> ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) e. CC ) |
60 |
59
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) ^ 2 ) = ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) |
61 |
51 60
|
eqtrd |
|- ( ph -> ( I ^ 2 ) = ( ( -u ( S ^ 2 ) - ( P / 2 ) ) + ( ( Q / 4 ) / S ) ) ) |
62 |
30
|
simp3d |
|- ( ph -> R e. CC ) |
63 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
64 |
|
3z |
|- 3 e. ZZ |
65 |
|
1exp |
|- ( 3 e. ZZ -> ( 1 ^ 3 ) = 1 ) |
66 |
64 65
|
mp1i |
|- ( ph -> ( 1 ^ 3 ) = 1 ) |
67 |
36
|
simp3d |
|- ( ph -> T e. CC ) |
68 |
67
|
mulid2d |
|- ( ph -> ( 1 x. T ) = T ) |
69 |
68
|
oveq2d |
|- ( ph -> ( ( 2 x. P ) + ( 1 x. T ) ) = ( ( 2 x. P ) + T ) ) |
70 |
68
|
oveq2d |
|- ( ph -> ( U / ( 1 x. T ) ) = ( U / T ) ) |
71 |
69 70
|
oveq12d |
|- ( ph -> ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) = ( ( ( 2 x. P ) + T ) + ( U / T ) ) ) |
72 |
71
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) = ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) ) |
73 |
72
|
negeqd |
|- ( ph -> -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) = -u ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) ) |
74 |
14 73
|
eqtr4d |
|- ( ph -> M = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) |
75 |
|
oveq1 |
|- ( x = 1 -> ( x ^ 3 ) = ( 1 ^ 3 ) ) |
76 |
75
|
eqeq1d |
|- ( x = 1 -> ( ( x ^ 3 ) = 1 <-> ( 1 ^ 3 ) = 1 ) ) |
77 |
|
oveq1 |
|- ( x = 1 -> ( x x. T ) = ( 1 x. T ) ) |
78 |
77
|
oveq2d |
|- ( x = 1 -> ( ( 2 x. P ) + ( x x. T ) ) = ( ( 2 x. P ) + ( 1 x. T ) ) ) |
79 |
77
|
oveq2d |
|- ( x = 1 -> ( U / ( x x. T ) ) = ( U / ( 1 x. T ) ) ) |
80 |
78 79
|
oveq12d |
|- ( x = 1 -> ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) = ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) ) |
81 |
80
|
oveq1d |
|- ( x = 1 -> ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) = ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) |
82 |
81
|
negeqd |
|- ( x = 1 -> -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) |
83 |
82
|
eqeq2d |
|- ( x = 1 -> ( M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) <-> M = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) ) |
84 |
76 83
|
anbi12d |
|- ( x = 1 -> ( ( ( x ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) ) <-> ( ( 1 ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) ) ) |
85 |
84
|
rspcev |
|- ( ( 1 e. CC /\ ( ( 1 ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( 1 x. T ) ) + ( U / ( 1 x. T ) ) ) / 3 ) ) ) -> E. x e. CC ( ( x ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) ) ) |
86 |
63 66 74 85
|
syl12anc |
|- ( ph -> E. x e. CC ( ( x ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) ) ) |
87 |
|
2cn |
|- 2 e. CC |
88 |
|
mulcl |
|- ( ( 2 e. CC /\ P e. CC ) -> ( 2 x. P ) e. CC ) |
89 |
87 31 88
|
sylancr |
|- ( ph -> ( 2 x. P ) e. CC ) |
90 |
31
|
sqcld |
|- ( ph -> ( P ^ 2 ) e. CC ) |
91 |
|
mulcl |
|- ( ( 4 e. CC /\ R e. CC ) -> ( 4 x. R ) e. CC ) |
92 |
21 62 91
|
sylancr |
|- ( ph -> ( 4 x. R ) e. CC ) |
93 |
90 92
|
subcld |
|- ( ph -> ( ( P ^ 2 ) - ( 4 x. R ) ) e. CC ) |
94 |
32
|
sqcld |
|- ( ph -> ( Q ^ 2 ) e. CC ) |
95 |
94
|
negcld |
|- ( ph -> -u ( Q ^ 2 ) e. CC ) |
96 |
15
|
oveq1d |
|- ( ph -> ( T ^ 3 ) = ( ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) ) |
97 |
1 2 3 4 1 6 7 8 9 10 11 12
|
quartlem2 |
|- ( ph -> ( U e. CC /\ V e. CC /\ W e. CC ) ) |
98 |
97
|
simp2d |
|- ( ph -> V e. CC ) |
99 |
97
|
simp3d |
|- ( ph -> W e. CC ) |
100 |
98 99
|
addcld |
|- ( ph -> ( V + W ) e. CC ) |
101 |
100
|
halfcld |
|- ( ph -> ( ( V + W ) / 2 ) e. CC ) |
102 |
|
3nn |
|- 3 e. NN |
103 |
|
cxproot |
|- ( ( ( ( V + W ) / 2 ) e. CC /\ 3 e. NN ) -> ( ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) = ( ( V + W ) / 2 ) ) |
104 |
101 102 103
|
sylancl |
|- ( ph -> ( ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ^ 3 ) = ( ( V + W ) / 2 ) ) |
105 |
96 104
|
eqtrd |
|- ( ph -> ( T ^ 3 ) = ( ( V + W ) / 2 ) ) |
106 |
12
|
oveq1d |
|- ( ph -> ( W ^ 2 ) = ( ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ^ 2 ) ) |
107 |
98
|
sqcld |
|- ( ph -> ( V ^ 2 ) e. CC ) |
108 |
97
|
simp1d |
|- ( ph -> U e. CC ) |
109 |
|
3nn0 |
|- 3 e. NN0 |
110 |
|
expcl |
|- ( ( U e. CC /\ 3 e. NN0 ) -> ( U ^ 3 ) e. CC ) |
111 |
108 109 110
|
sylancl |
|- ( ph -> ( U ^ 3 ) e. CC ) |
112 |
|
mulcl |
|- ( ( 4 e. CC /\ ( U ^ 3 ) e. CC ) -> ( 4 x. ( U ^ 3 ) ) e. CC ) |
113 |
21 111 112
|
sylancr |
|- ( ph -> ( 4 x. ( U ^ 3 ) ) e. CC ) |
114 |
107 113
|
subcld |
|- ( ph -> ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) e. CC ) |
115 |
114
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ^ 2 ) = ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) |
116 |
106 115
|
eqtrd |
|- ( ph -> ( W ^ 2 ) = ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) |
117 |
31 32 62 10 11
|
quartlem1 |
|- ( ph -> ( U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) /\ V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) ) |
118 |
117
|
simpld |
|- ( ph -> U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) |
119 |
117
|
simprd |
|- ( ph -> V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) |
120 |
89 93 95 39 67 105 99 116 118 119 16
|
mcubic |
|- ( ph -> ( ( ( ( M ^ 3 ) + ( ( 2 x. P ) x. ( M ^ 2 ) ) ) + ( ( ( ( P ^ 2 ) - ( 4 x. R ) ) x. M ) + -u ( Q ^ 2 ) ) ) = 0 <-> E. x e. CC ( ( x ^ 3 ) = 1 /\ M = -u ( ( ( ( 2 x. P ) + ( x x. T ) ) + ( U / ( x x. T ) ) ) / 3 ) ) ) ) |
121 |
86 120
|
mpbird |
|- ( ph -> ( ( ( M ^ 3 ) + ( ( 2 x. P ) x. ( M ^ 2 ) ) ) + ( ( ( ( P ^ 2 ) - ( 4 x. R ) ) x. M ) + -u ( Q ^ 2 ) ) ) = 0 ) |
122 |
49
|
simp3d |
|- ( ph -> J e. CC ) |
123 |
19
|
oveq1d |
|- ( ph -> ( J ^ 2 ) = ( ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) ^ 2 ) ) |
124 |
55 58
|
subcld |
|- ( ph -> ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) e. CC ) |
125 |
124
|
sqsqrtd |
|- ( ph -> ( ( sqrt ` ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) ^ 2 ) = ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) |
126 |
123 125
|
eqtrd |
|- ( ph -> ( J ^ 2 ) = ( ( -u ( S ^ 2 ) - ( P / 2 ) ) - ( ( Q / 4 ) / S ) ) ) |
127 |
31 32 35 37 48 17 50 61 62 121 122 126
|
dquart |
|- ( ph -> ( ( ( ( ( X - E ) ^ 4 ) + ( P x. ( ( X - E ) ^ 2 ) ) ) + ( ( Q x. ( X - E ) ) + R ) ) = 0 <-> ( ( ( X - E ) = ( -u S + I ) \/ ( X - E ) = ( -u S - I ) ) \/ ( ( X - E ) = ( S + J ) \/ ( X - E ) = ( S - J ) ) ) ) ) |
128 |
37
|
negcld |
|- ( ph -> -u S e. CC ) |
129 |
128 50
|
addcld |
|- ( ph -> ( -u S + I ) e. CC ) |
130 |
5 34 129
|
subaddd |
|- ( ph -> ( ( X - E ) = ( -u S + I ) <-> ( E + ( -u S + I ) ) = X ) ) |
131 |
34 37
|
negsubd |
|- ( ph -> ( E + -u S ) = ( E - S ) ) |
132 |
131
|
oveq1d |
|- ( ph -> ( ( E + -u S ) + I ) = ( ( E - S ) + I ) ) |
133 |
34 128 50
|
addassd |
|- ( ph -> ( ( E + -u S ) + I ) = ( E + ( -u S + I ) ) ) |
134 |
132 133
|
eqtr3d |
|- ( ph -> ( ( E - S ) + I ) = ( E + ( -u S + I ) ) ) |
135 |
134
|
eqeq1d |
|- ( ph -> ( ( ( E - S ) + I ) = X <-> ( E + ( -u S + I ) ) = X ) ) |
136 |
130 135
|
bitr4d |
|- ( ph -> ( ( X - E ) = ( -u S + I ) <-> ( ( E - S ) + I ) = X ) ) |
137 |
|
eqcom |
|- ( ( ( E - S ) + I ) = X <-> X = ( ( E - S ) + I ) ) |
138 |
136 137
|
bitrdi |
|- ( ph -> ( ( X - E ) = ( -u S + I ) <-> X = ( ( E - S ) + I ) ) ) |
139 |
128 50
|
subcld |
|- ( ph -> ( -u S - I ) e. CC ) |
140 |
5 34 139
|
subaddd |
|- ( ph -> ( ( X - E ) = ( -u S - I ) <-> ( E + ( -u S - I ) ) = X ) ) |
141 |
131
|
oveq1d |
|- ( ph -> ( ( E + -u S ) - I ) = ( ( E - S ) - I ) ) |
142 |
34 128 50
|
addsubassd |
|- ( ph -> ( ( E + -u S ) - I ) = ( E + ( -u S - I ) ) ) |
143 |
141 142
|
eqtr3d |
|- ( ph -> ( ( E - S ) - I ) = ( E + ( -u S - I ) ) ) |
144 |
143
|
eqeq1d |
|- ( ph -> ( ( ( E - S ) - I ) = X <-> ( E + ( -u S - I ) ) = X ) ) |
145 |
140 144
|
bitr4d |
|- ( ph -> ( ( X - E ) = ( -u S - I ) <-> ( ( E - S ) - I ) = X ) ) |
146 |
|
eqcom |
|- ( ( ( E - S ) - I ) = X <-> X = ( ( E - S ) - I ) ) |
147 |
145 146
|
bitrdi |
|- ( ph -> ( ( X - E ) = ( -u S - I ) <-> X = ( ( E - S ) - I ) ) ) |
148 |
138 147
|
orbi12d |
|- ( ph -> ( ( ( X - E ) = ( -u S + I ) \/ ( X - E ) = ( -u S - I ) ) <-> ( X = ( ( E - S ) + I ) \/ X = ( ( E - S ) - I ) ) ) ) |
149 |
37 122
|
addcld |
|- ( ph -> ( S + J ) e. CC ) |
150 |
5 34 149
|
subaddd |
|- ( ph -> ( ( X - E ) = ( S + J ) <-> ( E + ( S + J ) ) = X ) ) |
151 |
34 37 122
|
addassd |
|- ( ph -> ( ( E + S ) + J ) = ( E + ( S + J ) ) ) |
152 |
151
|
eqeq1d |
|- ( ph -> ( ( ( E + S ) + J ) = X <-> ( E + ( S + J ) ) = X ) ) |
153 |
150 152
|
bitr4d |
|- ( ph -> ( ( X - E ) = ( S + J ) <-> ( ( E + S ) + J ) = X ) ) |
154 |
|
eqcom |
|- ( ( ( E + S ) + J ) = X <-> X = ( ( E + S ) + J ) ) |
155 |
153 154
|
bitrdi |
|- ( ph -> ( ( X - E ) = ( S + J ) <-> X = ( ( E + S ) + J ) ) ) |
156 |
37 122
|
subcld |
|- ( ph -> ( S - J ) e. CC ) |
157 |
5 34 156
|
subaddd |
|- ( ph -> ( ( X - E ) = ( S - J ) <-> ( E + ( S - J ) ) = X ) ) |
158 |
34 37 122
|
addsubassd |
|- ( ph -> ( ( E + S ) - J ) = ( E + ( S - J ) ) ) |
159 |
158
|
eqeq1d |
|- ( ph -> ( ( ( E + S ) - J ) = X <-> ( E + ( S - J ) ) = X ) ) |
160 |
157 159
|
bitr4d |
|- ( ph -> ( ( X - E ) = ( S - J ) <-> ( ( E + S ) - J ) = X ) ) |
161 |
|
eqcom |
|- ( ( ( E + S ) - J ) = X <-> X = ( ( E + S ) - J ) ) |
162 |
160 161
|
bitrdi |
|- ( ph -> ( ( X - E ) = ( S - J ) <-> X = ( ( E + S ) - J ) ) ) |
163 |
155 162
|
orbi12d |
|- ( ph -> ( ( ( X - E ) = ( S + J ) \/ ( X - E ) = ( S - J ) ) <-> ( X = ( ( E + S ) + J ) \/ X = ( ( E + S ) - J ) ) ) ) |
164 |
148 163
|
orbi12d |
|- ( ph -> ( ( ( ( X - E ) = ( -u S + I ) \/ ( X - E ) = ( -u S - I ) ) \/ ( ( X - E ) = ( S + J ) \/ ( X - E ) = ( S - J ) ) ) <-> ( ( X = ( ( E - S ) + I ) \/ X = ( ( E - S ) - I ) ) \/ ( X = ( ( E + S ) + J ) \/ X = ( ( E + S ) - J ) ) ) ) ) |
165 |
29 127 164
|
3bitrd |
|- ( ph -> ( ( ( ( X ^ 4 ) + ( A x. ( X ^ 3 ) ) ) + ( ( B x. ( X ^ 2 ) ) + ( ( C x. X ) + D ) ) ) = 0 <-> ( ( X = ( ( E - S ) + I ) \/ X = ( ( E - S ) - I ) ) \/ ( X = ( ( E + S ) + J ) \/ X = ( ( E + S ) - J ) ) ) ) ) |