Step |
Hyp |
Ref |
Expression |
1 |
|
quartlem1.p |
|- ( ph -> P e. CC ) |
2 |
|
quartlem1.q |
|- ( ph -> Q e. CC ) |
3 |
|
quartlem1.r |
|- ( ph -> R e. CC ) |
4 |
|
quartlem1.u |
|- ( ph -> U = ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) ) |
5 |
|
quartlem1.v |
|- ( ph -> V = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
6 |
|
2cn |
|- 2 e. CC |
7 |
|
sqmul |
|- ( ( 2 e. CC /\ P e. CC ) -> ( ( 2 x. P ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) ) |
8 |
6 1 7
|
sylancr |
|- ( ph -> ( ( 2 x. P ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) ) |
9 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
10 |
9
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( P ^ 2 ) ) = ( 4 x. ( P ^ 2 ) ) |
11 |
8 10
|
eqtrdi |
|- ( ph -> ( ( 2 x. P ) ^ 2 ) = ( 4 x. ( P ^ 2 ) ) ) |
12 |
11
|
oveq1d |
|- ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) = ( ( 4 x. ( P ^ 2 ) ) - ( 3 x. ( P ^ 2 ) ) ) ) |
13 |
|
4cn |
|- 4 e. CC |
14 |
13
|
a1i |
|- ( ph -> 4 e. CC ) |
15 |
|
3cn |
|- 3 e. CC |
16 |
15
|
a1i |
|- ( ph -> 3 e. CC ) |
17 |
1
|
sqcld |
|- ( ph -> ( P ^ 2 ) e. CC ) |
18 |
14 16 17
|
subdird |
|- ( ph -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( ( 4 x. ( P ^ 2 ) ) - ( 3 x. ( P ^ 2 ) ) ) ) |
19 |
12 18
|
eqtr4d |
|- ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) = ( ( 4 - 3 ) x. ( P ^ 2 ) ) ) |
20 |
|
ax-1cn |
|- 1 e. CC |
21 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
22 |
13 15 20 21
|
subaddrii |
|- ( 4 - 3 ) = 1 |
23 |
22
|
oveq1i |
|- ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( 1 x. ( P ^ 2 ) ) |
24 |
|
mulid2 |
|- ( ( P ^ 2 ) e. CC -> ( 1 x. ( P ^ 2 ) ) = ( P ^ 2 ) ) |
25 |
23 24
|
eqtrid |
|- ( ( P ^ 2 ) e. CC -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( P ^ 2 ) ) |
26 |
17 25
|
syl |
|- ( ph -> ( ( 4 - 3 ) x. ( P ^ 2 ) ) = ( P ^ 2 ) ) |
27 |
19 26
|
eqtr2d |
|- ( ph -> ( P ^ 2 ) = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) ) |
28 |
27
|
oveq1d |
|- ( ph -> ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) = ( ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) + ( ; 1 2 x. R ) ) ) |
29 |
|
mulcl |
|- ( ( 2 e. CC /\ P e. CC ) -> ( 2 x. P ) e. CC ) |
30 |
6 1 29
|
sylancr |
|- ( ph -> ( 2 x. P ) e. CC ) |
31 |
30
|
sqcld |
|- ( ph -> ( ( 2 x. P ) ^ 2 ) e. CC ) |
32 |
|
mulcl |
|- ( ( 3 e. CC /\ ( P ^ 2 ) e. CC ) -> ( 3 x. ( P ^ 2 ) ) e. CC ) |
33 |
15 17 32
|
sylancr |
|- ( ph -> ( 3 x. ( P ^ 2 ) ) e. CC ) |
34 |
|
1nn0 |
|- 1 e. NN0 |
35 |
|
2nn |
|- 2 e. NN |
36 |
34 35
|
decnncl |
|- ; 1 2 e. NN |
37 |
36
|
nncni |
|- ; 1 2 e. CC |
38 |
|
mulcl |
|- ( ( ; 1 2 e. CC /\ R e. CC ) -> ( ; 1 2 x. R ) e. CC ) |
39 |
37 3 38
|
sylancr |
|- ( ph -> ( ; 1 2 x. R ) e. CC ) |
40 |
31 33 39
|
subsubd |
|- ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) = ( ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( P ^ 2 ) ) ) + ( ; 1 2 x. R ) ) ) |
41 |
28 40
|
eqtr4d |
|- ( ph -> ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) = ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) ) |
42 |
|
mulcl |
|- ( ( 4 e. CC /\ R e. CC ) -> ( 4 x. R ) e. CC ) |
43 |
13 3 42
|
sylancr |
|- ( ph -> ( 4 x. R ) e. CC ) |
44 |
16 17 43
|
subdid |
|- ( ph -> ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( 3 x. ( 4 x. R ) ) ) ) |
45 |
|
4t3e12 |
|- ( 4 x. 3 ) = ; 1 2 |
46 |
13 15 45
|
mulcomli |
|- ( 3 x. 4 ) = ; 1 2 |
47 |
46
|
oveq1i |
|- ( ( 3 x. 4 ) x. R ) = ( ; 1 2 x. R ) |
48 |
16 14 3
|
mulassd |
|- ( ph -> ( ( 3 x. 4 ) x. R ) = ( 3 x. ( 4 x. R ) ) ) |
49 |
47 48
|
eqtr3id |
|- ( ph -> ( ; 1 2 x. R ) = ( 3 x. ( 4 x. R ) ) ) |
50 |
49
|
oveq2d |
|- ( ph -> ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( 3 x. ( 4 x. R ) ) ) ) |
51 |
44 50
|
eqtr4d |
|- ( ph -> ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) |
52 |
51
|
oveq2d |
|- ( ph -> ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( ( ( 2 x. P ) ^ 2 ) - ( ( 3 x. ( P ^ 2 ) ) - ( ; 1 2 x. R ) ) ) ) |
53 |
41 4 52
|
3eqtr4d |
|- ( ph -> U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) |
54 |
6
|
a1i |
|- ( ph -> 2 e. CC ) |
55 |
|
3nn0 |
|- 3 e. NN0 |
56 |
55
|
a1i |
|- ( ph -> 3 e. NN0 ) |
57 |
54 1 56
|
mulexpd |
|- ( ph -> ( ( 2 x. P ) ^ 3 ) = ( ( 2 ^ 3 ) x. ( P ^ 3 ) ) ) |
58 |
|
cu2 |
|- ( 2 ^ 3 ) = 8 |
59 |
58
|
oveq1i |
|- ( ( 2 ^ 3 ) x. ( P ^ 3 ) ) = ( 8 x. ( P ^ 3 ) ) |
60 |
57 59
|
eqtrdi |
|- ( ph -> ( ( 2 x. P ) ^ 3 ) = ( 8 x. ( P ^ 3 ) ) ) |
61 |
60
|
oveq2d |
|- ( ph -> ( 2 x. ( ( 2 x. P ) ^ 3 ) ) = ( 2 x. ( 8 x. ( P ^ 3 ) ) ) ) |
62 |
|
8cn |
|- 8 e. CC |
63 |
62
|
a1i |
|- ( ph -> 8 e. CC ) |
64 |
|
expcl |
|- ( ( P e. CC /\ 3 e. NN0 ) -> ( P ^ 3 ) e. CC ) |
65 |
1 55 64
|
sylancl |
|- ( ph -> ( P ^ 3 ) e. CC ) |
66 |
54 63 65
|
mul12d |
|- ( ph -> ( 2 x. ( 8 x. ( P ^ 3 ) ) ) = ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) |
67 |
61 66
|
eqtrd |
|- ( ph -> ( 2 x. ( ( 2 x. P ) ^ 3 ) ) = ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) |
68 |
|
9cn |
|- 9 e. CC |
69 |
68
|
a1i |
|- ( ph -> 9 e. CC ) |
70 |
|
mulcl |
|- ( ( 2 e. CC /\ ( P ^ 3 ) e. CC ) -> ( 2 x. ( P ^ 3 ) ) e. CC ) |
71 |
6 65 70
|
sylancr |
|- ( ph -> ( 2 x. ( P ^ 3 ) ) e. CC ) |
72 |
1 3
|
mulcld |
|- ( ph -> ( P x. R ) e. CC ) |
73 |
|
mulcl |
|- ( ( 8 e. CC /\ ( P x. R ) e. CC ) -> ( 8 x. ( P x. R ) ) e. CC ) |
74 |
62 72 73
|
sylancr |
|- ( ph -> ( 8 x. ( P x. R ) ) e. CC ) |
75 |
69 71 74
|
subdid |
|- ( ph -> ( 9 x. ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 8 x. ( P x. R ) ) ) ) ) |
76 |
30 17 43
|
subdid |
|- ( ph -> ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( ( 2 x. P ) x. ( P ^ 2 ) ) - ( ( 2 x. P ) x. ( 4 x. R ) ) ) ) |
77 |
54 1 17
|
mulassd |
|- ( ph -> ( ( 2 x. P ) x. ( P ^ 2 ) ) = ( 2 x. ( P x. ( P ^ 2 ) ) ) ) |
78 |
1 17
|
mulcomd |
|- ( ph -> ( P x. ( P ^ 2 ) ) = ( ( P ^ 2 ) x. P ) ) |
79 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
80 |
79
|
oveq2i |
|- ( P ^ 3 ) = ( P ^ ( 2 + 1 ) ) |
81 |
|
2nn0 |
|- 2 e. NN0 |
82 |
|
expp1 |
|- ( ( P e. CC /\ 2 e. NN0 ) -> ( P ^ ( 2 + 1 ) ) = ( ( P ^ 2 ) x. P ) ) |
83 |
1 81 82
|
sylancl |
|- ( ph -> ( P ^ ( 2 + 1 ) ) = ( ( P ^ 2 ) x. P ) ) |
84 |
80 83
|
eqtrid |
|- ( ph -> ( P ^ 3 ) = ( ( P ^ 2 ) x. P ) ) |
85 |
78 84
|
eqtr4d |
|- ( ph -> ( P x. ( P ^ 2 ) ) = ( P ^ 3 ) ) |
86 |
85
|
oveq2d |
|- ( ph -> ( 2 x. ( P x. ( P ^ 2 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) |
87 |
77 86
|
eqtrd |
|- ( ph -> ( ( 2 x. P ) x. ( P ^ 2 ) ) = ( 2 x. ( P ^ 3 ) ) ) |
88 |
54 1 14 3
|
mul4d |
|- ( ph -> ( ( 2 x. P ) x. ( 4 x. R ) ) = ( ( 2 x. 4 ) x. ( P x. R ) ) ) |
89 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
90 |
13 6 89
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
91 |
90
|
oveq1i |
|- ( ( 2 x. 4 ) x. ( P x. R ) ) = ( 8 x. ( P x. R ) ) |
92 |
88 91
|
eqtrdi |
|- ( ph -> ( ( 2 x. P ) x. ( 4 x. R ) ) = ( 8 x. ( P x. R ) ) ) |
93 |
87 92
|
oveq12d |
|- ( ph -> ( ( ( 2 x. P ) x. ( P ^ 2 ) ) - ( ( 2 x. P ) x. ( 4 x. R ) ) ) = ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) |
94 |
76 93
|
eqtrd |
|- ( ph -> ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) = ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) |
95 |
94
|
oveq2d |
|- ( ph -> ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( 9 x. ( ( 2 x. ( P ^ 3 ) ) - ( 8 x. ( P x. R ) ) ) ) ) |
96 |
|
9t8e72 |
|- ( 9 x. 8 ) = ; 7 2 |
97 |
96
|
oveq1i |
|- ( ( 9 x. 8 ) x. ( P x. R ) ) = ( ; 7 2 x. ( P x. R ) ) |
98 |
69 63 72
|
mulassd |
|- ( ph -> ( ( 9 x. 8 ) x. ( P x. R ) ) = ( 9 x. ( 8 x. ( P x. R ) ) ) ) |
99 |
97 98
|
eqtr3id |
|- ( ph -> ( ; 7 2 x. ( P x. R ) ) = ( 9 x. ( 8 x. ( P x. R ) ) ) ) |
100 |
99
|
oveq2d |
|- ( ph -> ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 8 x. ( P x. R ) ) ) ) ) |
101 |
75 95 100
|
3eqtr4d |
|- ( ph -> ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) |
102 |
67 101
|
oveq12d |
|- ( ph -> ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) = ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) ) |
103 |
|
mulcl |
|- ( ( 8 e. CC /\ ( 2 x. ( P ^ 3 ) ) e. CC ) -> ( 8 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) |
104 |
62 71 103
|
sylancr |
|- ( ph -> ( 8 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) |
105 |
|
mulcl |
|- ( ( 9 e. CC /\ ( 2 x. ( P ^ 3 ) ) e. CC ) -> ( 9 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) |
106 |
68 71 105
|
sylancr |
|- ( ph -> ( 9 x. ( 2 x. ( P ^ 3 ) ) ) e. CC ) |
107 |
|
7nn0 |
|- 7 e. NN0 |
108 |
107 35
|
decnncl |
|- ; 7 2 e. NN |
109 |
108
|
nncni |
|- ; 7 2 e. CC |
110 |
|
mulcl |
|- ( ( ; 7 2 e. CC /\ ( P x. R ) e. CC ) -> ( ; 7 2 x. ( P x. R ) ) e. CC ) |
111 |
109 72 110
|
sylancr |
|- ( ph -> ( ; 7 2 x. ( P x. R ) ) e. CC ) |
112 |
104 106 111
|
subsubd |
|- ( ph -> ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( ; 7 2 x. ( P x. R ) ) ) ) = ( ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
113 |
106 104
|
negsubdi2d |
|- ( ph -> -u ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) ) |
114 |
69 63 71
|
subdird |
|- ( ph -> ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) ) |
115 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
116 |
68 62 20 115
|
subaddrii |
|- ( 9 - 8 ) = 1 |
117 |
116
|
oveq1i |
|- ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( 1 x. ( 2 x. ( P ^ 3 ) ) ) |
118 |
71
|
mulid2d |
|- ( ph -> ( 1 x. ( 2 x. ( P ^ 3 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) |
119 |
117 118
|
eqtrid |
|- ( ph -> ( ( 9 - 8 ) x. ( 2 x. ( P ^ 3 ) ) ) = ( 2 x. ( P ^ 3 ) ) ) |
120 |
114 119
|
eqtr3d |
|- ( ph -> ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = ( 2 x. ( P ^ 3 ) ) ) |
121 |
120
|
negeqd |
|- ( ph -> -u ( ( 9 x. ( 2 x. ( P ^ 3 ) ) ) - ( 8 x. ( 2 x. ( P ^ 3 ) ) ) ) = -u ( 2 x. ( P ^ 3 ) ) ) |
122 |
113 121
|
eqtr3d |
|- ( ph -> ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) = -u ( 2 x. ( P ^ 3 ) ) ) |
123 |
122
|
oveq1d |
|- ( ph -> ( ( ( 8 x. ( 2 x. ( P ^ 3 ) ) ) - ( 9 x. ( 2 x. ( P ^ 3 ) ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) = ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
124 |
102 112 123
|
3eqtrd |
|- ( ph -> ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) = ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
125 |
|
7nn |
|- 7 e. NN |
126 |
81 125
|
decnncl |
|- ; 2 7 e. NN |
127 |
126
|
nncni |
|- ; 2 7 e. CC |
128 |
2
|
sqcld |
|- ( ph -> ( Q ^ 2 ) e. CC ) |
129 |
|
mulneg2 |
|- ( ( ; 2 7 e. CC /\ ( Q ^ 2 ) e. CC ) -> ( ; 2 7 x. -u ( Q ^ 2 ) ) = -u ( ; 2 7 x. ( Q ^ 2 ) ) ) |
130 |
127 128 129
|
sylancr |
|- ( ph -> ( ; 2 7 x. -u ( Q ^ 2 ) ) = -u ( ; 2 7 x. ( Q ^ 2 ) ) ) |
131 |
124 130
|
oveq12d |
|- ( ph -> ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) ) |
132 |
71
|
negcld |
|- ( ph -> -u ( 2 x. ( P ^ 3 ) ) e. CC ) |
133 |
|
mulcl |
|- ( ( ; 2 7 e. CC /\ ( Q ^ 2 ) e. CC ) -> ( ; 2 7 x. ( Q ^ 2 ) ) e. CC ) |
134 |
127 128 133
|
sylancr |
|- ( ph -> ( ; 2 7 x. ( Q ^ 2 ) ) e. CC ) |
135 |
132 111 134
|
addsubd |
|- ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
136 |
132 111
|
addcld |
|- ( ph -> ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) e. CC ) |
137 |
136 134
|
negsubd |
|- ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) = ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) ) |
138 |
135 137 5
|
3eqtr4d |
|- ( ph -> ( ( -u ( 2 x. ( P ^ 3 ) ) + ( ; 7 2 x. ( P x. R ) ) ) + -u ( ; 2 7 x. ( Q ^ 2 ) ) ) = V ) |
139 |
131 138
|
eqtr2d |
|- ( ph -> V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) |
140 |
53 139
|
jca |
|- ( ph -> ( U = ( ( ( 2 x. P ) ^ 2 ) - ( 3 x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) /\ V = ( ( ( 2 x. ( ( 2 x. P ) ^ 3 ) ) - ( 9 x. ( ( 2 x. P ) x. ( ( P ^ 2 ) - ( 4 x. R ) ) ) ) ) + ( ; 2 7 x. -u ( Q ^ 2 ) ) ) ) ) |