| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quart.a |
|- ( ph -> A e. CC ) |
| 2 |
|
quart.b |
|- ( ph -> B e. CC ) |
| 3 |
|
quart.c |
|- ( ph -> C e. CC ) |
| 4 |
|
quart.d |
|- ( ph -> D e. CC ) |
| 5 |
|
quart.x |
|- ( ph -> X e. CC ) |
| 6 |
|
quart.e |
|- ( ph -> E = -u ( A / 4 ) ) |
| 7 |
|
quart.p |
|- ( ph -> P = ( B - ( ( 3 / 8 ) x. ( A ^ 2 ) ) ) ) |
| 8 |
|
quart.q |
|- ( ph -> Q = ( ( C - ( ( A x. B ) / 2 ) ) + ( ( A ^ 3 ) / 8 ) ) ) |
| 9 |
|
quart.r |
|- ( ph -> R = ( ( D - ( ( C x. A ) / 4 ) ) + ( ( ( ( A ^ 2 ) x. B ) / ; 1 6 ) - ( ( 3 / ; ; 2 5 6 ) x. ( A ^ 4 ) ) ) ) ) |
| 10 |
|
quart.u |
|- ( ph -> U = ( ( P ^ 2 ) + ( ; 1 2 x. R ) ) ) |
| 11 |
|
quart.v |
|- ( ph -> V = ( ( -u ( 2 x. ( P ^ 3 ) ) - ( ; 2 7 x. ( Q ^ 2 ) ) ) + ( ; 7 2 x. ( P x. R ) ) ) ) |
| 12 |
|
quart.w |
|- ( ph -> W = ( sqrt ` ( ( V ^ 2 ) - ( 4 x. ( U ^ 3 ) ) ) ) ) |
| 13 |
|
quart.s |
|- ( ph -> S = ( ( sqrt ` M ) / 2 ) ) |
| 14 |
|
quart.m |
|- ( ph -> M = -u ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) ) |
| 15 |
|
quart.t |
|- ( ph -> T = ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) ) |
| 16 |
|
quart.t0 |
|- ( ph -> T =/= 0 ) |
| 17 |
|
2cn |
|- 2 e. CC |
| 18 |
1 2 3 4 7 8 9
|
quart1cl |
|- ( ph -> ( P e. CC /\ Q e. CC /\ R e. CC ) ) |
| 19 |
18
|
simp1d |
|- ( ph -> P e. CC ) |
| 20 |
|
mulcl |
|- ( ( 2 e. CC /\ P e. CC ) -> ( 2 x. P ) e. CC ) |
| 21 |
17 19 20
|
sylancr |
|- ( ph -> ( 2 x. P ) e. CC ) |
| 22 |
1 2 3 4 1 6 7 8 9 10 11 12
|
quartlem2 |
|- ( ph -> ( U e. CC /\ V e. CC /\ W e. CC ) ) |
| 23 |
22
|
simp2d |
|- ( ph -> V e. CC ) |
| 24 |
22
|
simp3d |
|- ( ph -> W e. CC ) |
| 25 |
23 24
|
addcld |
|- ( ph -> ( V + W ) e. CC ) |
| 26 |
25
|
halfcld |
|- ( ph -> ( ( V + W ) / 2 ) e. CC ) |
| 27 |
|
3nn |
|- 3 e. NN |
| 28 |
|
nnrecre |
|- ( 3 e. NN -> ( 1 / 3 ) e. RR ) |
| 29 |
27 28
|
ax-mp |
|- ( 1 / 3 ) e. RR |
| 30 |
29
|
recni |
|- ( 1 / 3 ) e. CC |
| 31 |
|
cxpcl |
|- ( ( ( ( V + W ) / 2 ) e. CC /\ ( 1 / 3 ) e. CC ) -> ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) e. CC ) |
| 32 |
26 30 31
|
sylancl |
|- ( ph -> ( ( ( V + W ) / 2 ) ^c ( 1 / 3 ) ) e. CC ) |
| 33 |
15 32
|
eqeltrd |
|- ( ph -> T e. CC ) |
| 34 |
21 33
|
addcld |
|- ( ph -> ( ( 2 x. P ) + T ) e. CC ) |
| 35 |
22
|
simp1d |
|- ( ph -> U e. CC ) |
| 36 |
35 33 16
|
divcld |
|- ( ph -> ( U / T ) e. CC ) |
| 37 |
34 36
|
addcld |
|- ( ph -> ( ( ( 2 x. P ) + T ) + ( U / T ) ) e. CC ) |
| 38 |
|
3cn |
|- 3 e. CC |
| 39 |
38
|
a1i |
|- ( ph -> 3 e. CC ) |
| 40 |
|
3ne0 |
|- 3 =/= 0 |
| 41 |
40
|
a1i |
|- ( ph -> 3 =/= 0 ) |
| 42 |
37 39 41
|
divcld |
|- ( ph -> ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) e. CC ) |
| 43 |
42
|
negcld |
|- ( ph -> -u ( ( ( ( 2 x. P ) + T ) + ( U / T ) ) / 3 ) e. CC ) |
| 44 |
14 43
|
eqeltrd |
|- ( ph -> M e. CC ) |
| 45 |
44
|
sqrtcld |
|- ( ph -> ( sqrt ` M ) e. CC ) |
| 46 |
45
|
halfcld |
|- ( ph -> ( ( sqrt ` M ) / 2 ) e. CC ) |
| 47 |
13 46
|
eqeltrd |
|- ( ph -> S e. CC ) |
| 48 |
47 44 33
|
3jca |
|- ( ph -> ( S e. CC /\ M e. CC /\ T e. CC ) ) |