| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quotcan.1 |  |-  H = ( F oF x. G ) | 
						
							| 2 |  | plyssc |  |-  ( Poly ` S ) C_ ( Poly ` CC ) | 
						
							| 3 |  | simp2 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` S ) ) | 
						
							| 4 | 2 3 | sselid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` CC ) ) | 
						
							| 5 |  | simp1 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` S ) ) | 
						
							| 6 | 2 5 | sselid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` CC ) ) | 
						
							| 7 |  | plymulcl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( F oF x. G ) e. ( Poly ` CC ) ) | 
						
							| 8 | 1 7 | eqeltrid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> H e. ( Poly ` CC ) ) | 
						
							| 9 | 8 | 3adant3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> H e. ( Poly ` CC ) ) | 
						
							| 10 |  | simp3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G =/= 0p ) | 
						
							| 11 |  | quotcl2 |  |-  ( ( H e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) /\ G =/= 0p ) -> ( H quot G ) e. ( Poly ` CC ) ) | 
						
							| 12 | 9 4 10 11 | syl3anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H quot G ) e. ( Poly ` CC ) ) | 
						
							| 13 |  | plysubcl |  |-  ( ( F e. ( Poly ` CC ) /\ ( H quot G ) e. ( Poly ` CC ) ) -> ( F oF - ( H quot G ) ) e. ( Poly ` CC ) ) | 
						
							| 14 | 6 12 13 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F oF - ( H quot G ) ) e. ( Poly ` CC ) ) | 
						
							| 15 |  | plymul0or |  |-  ( ( G e. ( Poly ` CC ) /\ ( F oF - ( H quot G ) ) e. ( Poly ` CC ) ) -> ( ( G oF x. ( F oF - ( H quot G ) ) ) = 0p <-> ( G = 0p \/ ( F oF - ( H quot G ) ) = 0p ) ) ) | 
						
							| 16 | 4 14 15 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( G oF x. ( F oF - ( H quot G ) ) ) = 0p <-> ( G = 0p \/ ( F oF - ( H quot G ) ) = 0p ) ) ) | 
						
							| 17 |  | cnex |  |-  CC e. _V | 
						
							| 18 | 17 | a1i |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> CC e. _V ) | 
						
							| 19 |  | plyf |  |-  ( F e. ( Poly ` S ) -> F : CC --> CC ) | 
						
							| 20 | 5 19 | syl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F : CC --> CC ) | 
						
							| 21 |  | plyf |  |-  ( G e. ( Poly ` S ) -> G : CC --> CC ) | 
						
							| 22 | 3 21 | syl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G : CC --> CC ) | 
						
							| 23 |  | mulcom |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) | 
						
							| 25 | 18 20 22 24 | caofcom |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F oF x. G ) = ( G oF x. F ) ) | 
						
							| 26 | 1 25 | eqtrid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> H = ( G oF x. F ) ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H oF - ( G oF x. ( H quot G ) ) ) = ( ( G oF x. F ) oF - ( G oF x. ( H quot G ) ) ) ) | 
						
							| 28 |  | plyf |  |-  ( ( H quot G ) e. ( Poly ` CC ) -> ( H quot G ) : CC --> CC ) | 
						
							| 29 | 12 28 | syl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H quot G ) : CC --> CC ) | 
						
							| 30 |  | subdi |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) | 
						
							| 32 | 18 22 20 29 31 | caofdi |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( G oF x. ( F oF - ( H quot G ) ) ) = ( ( G oF x. F ) oF - ( G oF x. ( H quot G ) ) ) ) | 
						
							| 33 | 27 32 | eqtr4d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H oF - ( G oF x. ( H quot G ) ) ) = ( G oF x. ( F oF - ( H quot G ) ) ) ) | 
						
							| 34 | 33 | eqeq1d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p <-> ( G oF x. ( F oF - ( H quot G ) ) ) = 0p ) ) | 
						
							| 35 | 10 | neneqd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> -. G = 0p ) | 
						
							| 36 |  | biorf |  |-  ( -. G = 0p -> ( ( F oF - ( H quot G ) ) = 0p <-> ( G = 0p \/ ( F oF - ( H quot G ) ) = 0p ) ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) = 0p <-> ( G = 0p \/ ( F oF - ( H quot G ) ) = 0p ) ) ) | 
						
							| 38 | 16 34 37 | 3bitr4d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p <-> ( F oF - ( H quot G ) ) = 0p ) ) | 
						
							| 39 | 38 | biimpd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p -> ( F oF - ( H quot G ) ) = 0p ) ) | 
						
							| 40 |  | eqid |  |-  ( deg ` G ) = ( deg ` G ) | 
						
							| 41 |  | eqid |  |-  ( deg ` ( F oF - ( H quot G ) ) ) = ( deg ` ( F oF - ( H quot G ) ) ) | 
						
							| 42 | 40 41 | dgrmul |  |-  ( ( ( G e. ( Poly ` CC ) /\ G =/= 0p ) /\ ( ( F oF - ( H quot G ) ) e. ( Poly ` CC ) /\ ( F oF - ( H quot G ) ) =/= 0p ) ) -> ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) | 
						
							| 43 | 42 | expr |  |-  ( ( ( G e. ( Poly ` CC ) /\ G =/= 0p ) /\ ( F oF - ( H quot G ) ) e. ( Poly ` CC ) ) -> ( ( F oF - ( H quot G ) ) =/= 0p -> ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) ) | 
						
							| 44 | 4 10 14 43 | syl21anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) =/= 0p -> ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) ) | 
						
							| 45 |  | dgrcl |  |-  ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) | 
						
							| 46 | 3 45 | syl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` G ) e. NN0 ) | 
						
							| 47 | 46 | nn0red |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` G ) e. RR ) | 
						
							| 48 |  | dgrcl |  |-  ( ( F oF - ( H quot G ) ) e. ( Poly ` CC ) -> ( deg ` ( F oF - ( H quot G ) ) ) e. NN0 ) | 
						
							| 49 | 14 48 | syl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` ( F oF - ( H quot G ) ) ) e. NN0 ) | 
						
							| 50 |  | nn0addge1 |  |-  ( ( ( deg ` G ) e. RR /\ ( deg ` ( F oF - ( H quot G ) ) ) e. NN0 ) -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) | 
						
							| 51 | 47 49 50 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) | 
						
							| 52 |  | breq2 |  |-  ( ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) -> ( ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) <-> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) ) | 
						
							| 53 | 51 52 | syl5ibrcom |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) -> ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) ) ) | 
						
							| 54 | 44 53 | syld |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) =/= 0p -> ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) ) ) | 
						
							| 55 | 33 | fveq2d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) = ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) ) | 
						
							| 56 | 55 | breq2d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` G ) <_ ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) <-> ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) ) ) | 
						
							| 57 |  | plymulcl |  |-  ( ( G e. ( Poly ` CC ) /\ ( H quot G ) e. ( Poly ` CC ) ) -> ( G oF x. ( H quot G ) ) e. ( Poly ` CC ) ) | 
						
							| 58 | 4 12 57 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( G oF x. ( H quot G ) ) e. ( Poly ` CC ) ) | 
						
							| 59 |  | plysubcl |  |-  ( ( H e. ( Poly ` CC ) /\ ( G oF x. ( H quot G ) ) e. ( Poly ` CC ) ) -> ( H oF - ( G oF x. ( H quot G ) ) ) e. ( Poly ` CC ) ) | 
						
							| 60 | 9 58 59 | syl2anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H oF - ( G oF x. ( H quot G ) ) ) e. ( Poly ` CC ) ) | 
						
							| 61 |  | dgrcl |  |-  ( ( H oF - ( G oF x. ( H quot G ) ) ) e. ( Poly ` CC ) -> ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) e. NN0 ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) e. NN0 ) | 
						
							| 63 | 62 | nn0red |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) e. RR ) | 
						
							| 64 | 47 63 | lenltd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` G ) <_ ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) <-> -. ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) | 
						
							| 65 | 56 64 | bitr3d |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) <-> -. ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) | 
						
							| 66 | 54 65 | sylibd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) =/= 0p -> -. ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) | 
						
							| 67 | 66 | necon4ad |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) -> ( F oF - ( H quot G ) ) = 0p ) ) | 
						
							| 68 |  | eqid |  |-  ( H oF - ( G oF x. ( H quot G ) ) ) = ( H oF - ( G oF x. ( H quot G ) ) ) | 
						
							| 69 | 68 | quotdgr |  |-  ( ( H e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p \/ ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) | 
						
							| 70 | 9 4 10 69 | syl3anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p \/ ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) | 
						
							| 71 | 39 67 70 | mpjaod |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F oF - ( H quot G ) ) = 0p ) | 
						
							| 72 |  | df-0p |  |-  0p = ( CC X. { 0 } ) | 
						
							| 73 | 71 72 | eqtrdi |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F oF - ( H quot G ) ) = ( CC X. { 0 } ) ) | 
						
							| 74 |  | ofsubeq0 |  |-  ( ( CC e. _V /\ F : CC --> CC /\ ( H quot G ) : CC --> CC ) -> ( ( F oF - ( H quot G ) ) = ( CC X. { 0 } ) <-> F = ( H quot G ) ) ) | 
						
							| 75 | 18 20 29 74 | syl3anc |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) = ( CC X. { 0 } ) <-> F = ( H quot G ) ) ) | 
						
							| 76 | 73 75 | mpbid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F = ( H quot G ) ) | 
						
							| 77 | 76 | eqcomd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H quot G ) = F ) |