Step |
Hyp |
Ref |
Expression |
1 |
|
quotcan.1 |
|- H = ( F oF x. G ) |
2 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
3 |
|
simp2 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` S ) ) |
4 |
2 3
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` CC ) ) |
5 |
|
simp1 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` S ) ) |
6 |
2 5
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` CC ) ) |
7 |
|
plymulcl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> ( F oF x. G ) e. ( Poly ` CC ) ) |
8 |
1 7
|
eqeltrid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) ) -> H e. ( Poly ` CC ) ) |
9 |
8
|
3adant3 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> H e. ( Poly ` CC ) ) |
10 |
|
simp3 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G =/= 0p ) |
11 |
|
quotcl2 |
|- ( ( H e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) /\ G =/= 0p ) -> ( H quot G ) e. ( Poly ` CC ) ) |
12 |
9 4 10 11
|
syl3anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H quot G ) e. ( Poly ` CC ) ) |
13 |
|
plysubcl |
|- ( ( F e. ( Poly ` CC ) /\ ( H quot G ) e. ( Poly ` CC ) ) -> ( F oF - ( H quot G ) ) e. ( Poly ` CC ) ) |
14 |
6 12 13
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F oF - ( H quot G ) ) e. ( Poly ` CC ) ) |
15 |
|
plymul0or |
|- ( ( G e. ( Poly ` CC ) /\ ( F oF - ( H quot G ) ) e. ( Poly ` CC ) ) -> ( ( G oF x. ( F oF - ( H quot G ) ) ) = 0p <-> ( G = 0p \/ ( F oF - ( H quot G ) ) = 0p ) ) ) |
16 |
4 14 15
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( G oF x. ( F oF - ( H quot G ) ) ) = 0p <-> ( G = 0p \/ ( F oF - ( H quot G ) ) = 0p ) ) ) |
17 |
|
cnex |
|- CC e. _V |
18 |
17
|
a1i |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> CC e. _V ) |
19 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
20 |
5 19
|
syl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F : CC --> CC ) |
21 |
|
plyf |
|- ( G e. ( Poly ` S ) -> G : CC --> CC ) |
22 |
3 21
|
syl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G : CC --> CC ) |
23 |
|
mulcom |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
24 |
23
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) |
25 |
18 20 22 24
|
caofcom |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F oF x. G ) = ( G oF x. F ) ) |
26 |
1 25
|
eqtrid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> H = ( G oF x. F ) ) |
27 |
26
|
oveq1d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H oF - ( G oF x. ( H quot G ) ) ) = ( ( G oF x. F ) oF - ( G oF x. ( H quot G ) ) ) ) |
28 |
|
plyf |
|- ( ( H quot G ) e. ( Poly ` CC ) -> ( H quot G ) : CC --> CC ) |
29 |
12 28
|
syl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H quot G ) : CC --> CC ) |
30 |
|
subdi |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
31 |
30
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) |
32 |
18 22 20 29 31
|
caofdi |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( G oF x. ( F oF - ( H quot G ) ) ) = ( ( G oF x. F ) oF - ( G oF x. ( H quot G ) ) ) ) |
33 |
27 32
|
eqtr4d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H oF - ( G oF x. ( H quot G ) ) ) = ( G oF x. ( F oF - ( H quot G ) ) ) ) |
34 |
33
|
eqeq1d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p <-> ( G oF x. ( F oF - ( H quot G ) ) ) = 0p ) ) |
35 |
10
|
neneqd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> -. G = 0p ) |
36 |
|
biorf |
|- ( -. G = 0p -> ( ( F oF - ( H quot G ) ) = 0p <-> ( G = 0p \/ ( F oF - ( H quot G ) ) = 0p ) ) ) |
37 |
35 36
|
syl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) = 0p <-> ( G = 0p \/ ( F oF - ( H quot G ) ) = 0p ) ) ) |
38 |
16 34 37
|
3bitr4d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p <-> ( F oF - ( H quot G ) ) = 0p ) ) |
39 |
38
|
biimpd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p -> ( F oF - ( H quot G ) ) = 0p ) ) |
40 |
|
eqid |
|- ( deg ` G ) = ( deg ` G ) |
41 |
|
eqid |
|- ( deg ` ( F oF - ( H quot G ) ) ) = ( deg ` ( F oF - ( H quot G ) ) ) |
42 |
40 41
|
dgrmul |
|- ( ( ( G e. ( Poly ` CC ) /\ G =/= 0p ) /\ ( ( F oF - ( H quot G ) ) e. ( Poly ` CC ) /\ ( F oF - ( H quot G ) ) =/= 0p ) ) -> ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) |
43 |
42
|
expr |
|- ( ( ( G e. ( Poly ` CC ) /\ G =/= 0p ) /\ ( F oF - ( H quot G ) ) e. ( Poly ` CC ) ) -> ( ( F oF - ( H quot G ) ) =/= 0p -> ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) ) |
44 |
4 10 14 43
|
syl21anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) =/= 0p -> ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) ) |
45 |
|
dgrcl |
|- ( G e. ( Poly ` S ) -> ( deg ` G ) e. NN0 ) |
46 |
3 45
|
syl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` G ) e. NN0 ) |
47 |
46
|
nn0red |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` G ) e. RR ) |
48 |
|
dgrcl |
|- ( ( F oF - ( H quot G ) ) e. ( Poly ` CC ) -> ( deg ` ( F oF - ( H quot G ) ) ) e. NN0 ) |
49 |
14 48
|
syl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` ( F oF - ( H quot G ) ) ) e. NN0 ) |
50 |
|
nn0addge1 |
|- ( ( ( deg ` G ) e. RR /\ ( deg ` ( F oF - ( H quot G ) ) ) e. NN0 ) -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) |
51 |
47 49 50
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) |
52 |
|
breq2 |
|- ( ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) -> ( ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) <-> ( deg ` G ) <_ ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) ) ) |
53 |
51 52
|
syl5ibrcom |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) = ( ( deg ` G ) + ( deg ` ( F oF - ( H quot G ) ) ) ) -> ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) ) ) |
54 |
44 53
|
syld |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) =/= 0p -> ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) ) ) |
55 |
33
|
fveq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) = ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) ) |
56 |
55
|
breq2d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` G ) <_ ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) <-> ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) ) ) |
57 |
|
plymulcl |
|- ( ( G e. ( Poly ` CC ) /\ ( H quot G ) e. ( Poly ` CC ) ) -> ( G oF x. ( H quot G ) ) e. ( Poly ` CC ) ) |
58 |
4 12 57
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( G oF x. ( H quot G ) ) e. ( Poly ` CC ) ) |
59 |
|
plysubcl |
|- ( ( H e. ( Poly ` CC ) /\ ( G oF x. ( H quot G ) ) e. ( Poly ` CC ) ) -> ( H oF - ( G oF x. ( H quot G ) ) ) e. ( Poly ` CC ) ) |
60 |
9 58 59
|
syl2anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H oF - ( G oF x. ( H quot G ) ) ) e. ( Poly ` CC ) ) |
61 |
|
dgrcl |
|- ( ( H oF - ( G oF x. ( H quot G ) ) ) e. ( Poly ` CC ) -> ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) e. NN0 ) |
62 |
60 61
|
syl |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) e. NN0 ) |
63 |
62
|
nn0red |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) e. RR ) |
64 |
47 63
|
lenltd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` G ) <_ ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) <-> -. ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) |
65 |
56 64
|
bitr3d |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` G ) <_ ( deg ` ( G oF x. ( F oF - ( H quot G ) ) ) ) <-> -. ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) |
66 |
54 65
|
sylibd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) =/= 0p -> -. ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) |
67 |
66
|
necon4ad |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) -> ( F oF - ( H quot G ) ) = 0p ) ) |
68 |
|
eqid |
|- ( H oF - ( G oF x. ( H quot G ) ) ) = ( H oF - ( G oF x. ( H quot G ) ) ) |
69 |
68
|
quotdgr |
|- ( ( H e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p \/ ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) |
70 |
9 4 10 69
|
syl3anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( H oF - ( G oF x. ( H quot G ) ) ) = 0p \/ ( deg ` ( H oF - ( G oF x. ( H quot G ) ) ) ) < ( deg ` G ) ) ) |
71 |
39 67 70
|
mpjaod |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F oF - ( H quot G ) ) = 0p ) |
72 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
73 |
71 72
|
eqtrdi |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F oF - ( H quot G ) ) = ( CC X. { 0 } ) ) |
74 |
|
ofsubeq0 |
|- ( ( CC e. _V /\ F : CC --> CC /\ ( H quot G ) : CC --> CC ) -> ( ( F oF - ( H quot G ) ) = ( CC X. { 0 } ) <-> F = ( H quot G ) ) ) |
75 |
18 20 29 74
|
syl3anc |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F oF - ( H quot G ) ) = ( CC X. { 0 } ) <-> F = ( H quot G ) ) ) |
76 |
73 75
|
mpbid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F = ( H quot G ) ) |
77 |
76
|
eqcomd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( H quot G ) = F ) |