Description: The quotient of two polynomials in a field S is also in the field. (Contributed by Mario Carneiro, 26-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plydiv.pl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
|
plydiv.tm | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
||
plydiv.rc | |- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
||
plydiv.m1 | |- ( ph -> -u 1 e. S ) |
||
plydiv.f | |- ( ph -> F e. ( Poly ` S ) ) |
||
plydiv.g | |- ( ph -> G e. ( Poly ` S ) ) |
||
plydiv.z | |- ( ph -> G =/= 0p ) |
||
Assertion | quotcl | |- ( ph -> ( F quot G ) e. ( Poly ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plydiv.pl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
|
2 | plydiv.tm | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
|
3 | plydiv.rc | |- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
|
4 | plydiv.m1 | |- ( ph -> -u 1 e. S ) |
|
5 | plydiv.f | |- ( ph -> F e. ( Poly ` S ) ) |
|
6 | plydiv.g | |- ( ph -> G e. ( Poly ` S ) ) |
|
7 | plydiv.z | |- ( ph -> G =/= 0p ) |
|
8 | eqid | |- ( F oF - ( G oF x. ( F quot G ) ) ) = ( F oF - ( G oF x. ( F quot G ) ) ) |
|
9 | 1 2 3 4 5 6 7 8 | quotlem | |- ( ph -> ( ( F quot G ) e. ( Poly ` S ) /\ ( ( F oF - ( G oF x. ( F quot G ) ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. ( F quot G ) ) ) ) < ( deg ` G ) ) ) ) |
10 | 9 | simpld | |- ( ph -> ( F quot G ) e. ( Poly ` S ) ) |