Metamath Proof Explorer


Theorem quotcl2

Description: Closure of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Assertion quotcl2
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F quot G ) e. ( Poly ` CC ) )

Proof

Step Hyp Ref Expression
1 addcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC )
2 1 adantl
 |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC )
3 mulcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC )
4 3 adantl
 |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC )
5 reccl
 |-  ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC )
6 5 adantl
 |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC )
7 neg1cn
 |-  -u 1 e. CC
8 7 a1i
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> -u 1 e. CC )
9 plyssc
 |-  ( Poly ` S ) C_ ( Poly ` CC )
10 simp1
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` S ) )
11 9 10 sseldi
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` CC ) )
12 simp2
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` S ) )
13 9 12 sseldi
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` CC ) )
14 simp3
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G =/= 0p )
15 2 4 6 8 11 13 14 quotcl
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F quot G ) e. ( Poly ` CC ) )