| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) | 
						
							| 3 |  | mulcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) | 
						
							| 5 |  | reccl |  |-  ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) | 
						
							| 7 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 8 | 7 | a1i |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> -u 1 e. CC ) | 
						
							| 9 |  | plyssc |  |-  ( Poly ` S ) C_ ( Poly ` CC ) | 
						
							| 10 |  | simp1 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` S ) ) | 
						
							| 11 | 9 10 | sselid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` CC ) ) | 
						
							| 12 |  | simp2 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` S ) ) | 
						
							| 13 | 9 12 | sselid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` CC ) ) | 
						
							| 14 |  | simp3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G =/= 0p ) | 
						
							| 15 | 2 4 6 8 11 13 14 | quotcl |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F quot G ) e. ( Poly ` CC ) ) |