| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quotdgr.1 |  |-  R = ( F oF - ( G oF x. ( F quot G ) ) ) | 
						
							| 2 |  | addcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) | 
						
							| 4 |  | mulcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) | 
						
							| 6 |  | reccl |  |-  ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) | 
						
							| 8 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 9 | 8 | a1i |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> -u 1 e. CC ) | 
						
							| 10 |  | plyssc |  |-  ( Poly ` S ) C_ ( Poly ` CC ) | 
						
							| 11 |  | simp1 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` S ) ) | 
						
							| 12 | 10 11 | sselid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` CC ) ) | 
						
							| 13 |  | simp2 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` S ) ) | 
						
							| 14 | 10 13 | sselid |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` CC ) ) | 
						
							| 15 |  | simp3 |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G =/= 0p ) | 
						
							| 16 | 3 5 7 9 12 14 15 1 | quotlem |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F quot G ) e. ( Poly ` CC ) /\ ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) | 
						
							| 17 | 16 | simprd |  |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |