Step |
Hyp |
Ref |
Expression |
1 |
|
quotdgr.1 |
|- R = ( F oF - ( G oF x. ( F quot G ) ) ) |
2 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
3 |
2
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) |
4 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
5 |
4
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
6 |
|
reccl |
|- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) |
7 |
6
|
adantl |
|- ( ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
8 |
|
neg1cn |
|- -u 1 e. CC |
9 |
8
|
a1i |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> -u 1 e. CC ) |
10 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
11 |
|
simp1 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` S ) ) |
12 |
10 11
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> F e. ( Poly ` CC ) ) |
13 |
|
simp2 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` S ) ) |
14 |
10 13
|
sselid |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G e. ( Poly ` CC ) ) |
15 |
|
simp3 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> G =/= 0p ) |
16 |
3 5 7 9 12 14 15 1
|
quotlem |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( ( F quot G ) e. ( Poly ` CC ) /\ ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
17 |
16
|
simprd |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) |