Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
2 |
|
plydiv.tm |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
3 |
|
plydiv.rc |
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S ) |
4 |
|
plydiv.m1 |
|- ( ph -> -u 1 e. S ) |
5 |
|
plydiv.f |
|- ( ph -> F e. ( Poly ` S ) ) |
6 |
|
plydiv.g |
|- ( ph -> G e. ( Poly ` S ) ) |
7 |
|
plydiv.z |
|- ( ph -> G =/= 0p ) |
8 |
|
quotlem.8 |
|- R = ( F oF - ( G oF x. ( F quot G ) ) ) |
9 |
|
eqid |
|- ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. q ) ) |
10 |
9
|
quotval |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
11 |
5 6 7 10
|
syl3anc |
|- ( ph -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
12 |
1 2 3 4 5 6 7 9
|
plydivalg |
|- ( ph -> E! q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
13 |
|
reurex |
|- ( E! q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> E. q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
14 |
12 13
|
syl |
|- ( ph -> E. q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
15 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
16 |
15
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) |
17 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
18 |
17
|
adantl |
|- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
19 |
|
reccl |
|- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) |
20 |
19
|
adantl |
|- ( ( ph /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
21 |
|
neg1cn |
|- -u 1 e. CC |
22 |
21
|
a1i |
|- ( ph -> -u 1 e. CC ) |
23 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
24 |
23 5
|
sselid |
|- ( ph -> F e. ( Poly ` CC ) ) |
25 |
23 6
|
sselid |
|- ( ph -> G e. ( Poly ` CC ) ) |
26 |
16 18 20 22 24 25 7 9
|
plydivalg |
|- ( ph -> E! q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
27 |
|
id |
|- ( ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
28 |
27
|
rgenw |
|- A. q e. ( Poly ` S ) ( ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) |
29 |
|
riotass2 |
|- ( ( ( ( Poly ` S ) C_ ( Poly ` CC ) /\ A. q e. ( Poly ` S ) ( ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) /\ ( E. q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) /\ E! q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
30 |
23 28 29
|
mpanl12 |
|- ( ( E. q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) /\ E! q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
31 |
14 26 30
|
syl2anc |
|- ( ph -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
32 |
11 31
|
eqtr4d |
|- ( ph -> ( F quot G ) = ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) |
33 |
|
riotacl2 |
|- ( E! q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) e. { q e. ( Poly ` S ) | ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) } ) |
34 |
12 33
|
syl |
|- ( ph -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) e. { q e. ( Poly ` S ) | ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) } ) |
35 |
32 34
|
eqeltrd |
|- ( ph -> ( F quot G ) e. { q e. ( Poly ` S ) | ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) } ) |
36 |
|
oveq2 |
|- ( q = ( F quot G ) -> ( G oF x. q ) = ( G oF x. ( F quot G ) ) ) |
37 |
36
|
oveq2d |
|- ( q = ( F quot G ) -> ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. ( F quot G ) ) ) ) |
38 |
37 8
|
eqtr4di |
|- ( q = ( F quot G ) -> ( F oF - ( G oF x. q ) ) = R ) |
39 |
38
|
eqeq1d |
|- ( q = ( F quot G ) -> ( ( F oF - ( G oF x. q ) ) = 0p <-> R = 0p ) ) |
40 |
38
|
fveq2d |
|- ( q = ( F quot G ) -> ( deg ` ( F oF - ( G oF x. q ) ) ) = ( deg ` R ) ) |
41 |
40
|
breq1d |
|- ( q = ( F quot G ) -> ( ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) <-> ( deg ` R ) < ( deg ` G ) ) ) |
42 |
39 41
|
orbi12d |
|- ( q = ( F quot G ) -> ( ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
43 |
42
|
elrab |
|- ( ( F quot G ) e. { q e. ( Poly ` S ) | ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) } <-> ( ( F quot G ) e. ( Poly ` S ) /\ ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
44 |
35 43
|
sylib |
|- ( ph -> ( ( F quot G ) e. ( Poly ` S ) /\ ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |