Metamath Proof Explorer


Theorem quotlem

Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plydiv.pl
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
plydiv.tm
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
plydiv.rc
|- ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S )
plydiv.m1
|- ( ph -> -u 1 e. S )
plydiv.f
|- ( ph -> F e. ( Poly ` S ) )
plydiv.g
|- ( ph -> G e. ( Poly ` S ) )
plydiv.z
|- ( ph -> G =/= 0p )
quotlem.8
|- R = ( F oF - ( G oF x. ( F quot G ) ) )
Assertion quotlem
|- ( ph -> ( ( F quot G ) e. ( Poly ` S ) /\ ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) )

Proof

Step Hyp Ref Expression
1 plydiv.pl
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S )
2 plydiv.tm
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
3 plydiv.rc
 |-  ( ( ph /\ ( x e. S /\ x =/= 0 ) ) -> ( 1 / x ) e. S )
4 plydiv.m1
 |-  ( ph -> -u 1 e. S )
5 plydiv.f
 |-  ( ph -> F e. ( Poly ` S ) )
6 plydiv.g
 |-  ( ph -> G e. ( Poly ` S ) )
7 plydiv.z
 |-  ( ph -> G =/= 0p )
8 quotlem.8
 |-  R = ( F oF - ( G oF x. ( F quot G ) ) )
9 eqid
 |-  ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. q ) )
10 9 quotval
 |-  ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) )
11 5 6 7 10 syl3anc
 |-  ( ph -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) )
12 1 2 3 4 5 6 7 9 plydivalg
 |-  ( ph -> E! q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) )
13 reurex
 |-  ( E! q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> E. q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) )
14 12 13 syl
 |-  ( ph -> E. q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) )
15 addcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC )
16 15 adantl
 |-  ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC )
17 mulcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC )
18 17 adantl
 |-  ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC )
19 reccl
 |-  ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC )
20 19 adantl
 |-  ( ( ph /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC )
21 neg1cn
 |-  -u 1 e. CC
22 21 a1i
 |-  ( ph -> -u 1 e. CC )
23 plyssc
 |-  ( Poly ` S ) C_ ( Poly ` CC )
24 23 5 sseldi
 |-  ( ph -> F e. ( Poly ` CC ) )
25 23 6 sseldi
 |-  ( ph -> G e. ( Poly ` CC ) )
26 16 18 20 22 24 25 7 9 plydivalg
 |-  ( ph -> E! q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) )
27 id
 |-  ( ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) )
28 27 rgenw
 |-  A. q e. ( Poly ` S ) ( ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) )
29 riotass2
 |-  ( ( ( ( Poly ` S ) C_ ( Poly ` CC ) /\ A. q e. ( Poly ` S ) ( ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) /\ ( E. q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) /\ E! q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) ) -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) )
30 23 28 29 mpanl12
 |-  ( ( E. q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) /\ E! q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) )
31 14 26 30 syl2anc
 |-  ( ph -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) = ( iota_ q e. ( Poly ` CC ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) )
32 11 31 eqtr4d
 |-  ( ph -> ( F quot G ) = ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) )
33 riotacl2
 |-  ( E! q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) e. { q e. ( Poly ` S ) | ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) } )
34 12 33 syl
 |-  ( ph -> ( iota_ q e. ( Poly ` S ) ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) ) e. { q e. ( Poly ` S ) | ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) } )
35 32 34 eqeltrd
 |-  ( ph -> ( F quot G ) e. { q e. ( Poly ` S ) | ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) } )
36 oveq2
 |-  ( q = ( F quot G ) -> ( G oF x. q ) = ( G oF x. ( F quot G ) ) )
37 36 oveq2d
 |-  ( q = ( F quot G ) -> ( F oF - ( G oF x. q ) ) = ( F oF - ( G oF x. ( F quot G ) ) ) )
38 37 8 eqtr4di
 |-  ( q = ( F quot G ) -> ( F oF - ( G oF x. q ) ) = R )
39 38 eqeq1d
 |-  ( q = ( F quot G ) -> ( ( F oF - ( G oF x. q ) ) = 0p <-> R = 0p ) )
40 38 fveq2d
 |-  ( q = ( F quot G ) -> ( deg ` ( F oF - ( G oF x. q ) ) ) = ( deg ` R ) )
41 40 breq1d
 |-  ( q = ( F quot G ) -> ( ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) <-> ( deg ` R ) < ( deg ` G ) ) )
42 39 41 orbi12d
 |-  ( q = ( F quot G ) -> ( ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) )
43 42 elrab
 |-  ( ( F quot G ) e. { q e. ( Poly ` S ) | ( ( F oF - ( G oF x. q ) ) = 0p \/ ( deg ` ( F oF - ( G oF x. q ) ) ) < ( deg ` G ) ) } <-> ( ( F quot G ) e. ( Poly ` S ) /\ ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) )
44 35 43 sylib
 |-  ( ph -> ( ( F quot G ) e. ( Poly ` S ) /\ ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) )