Step |
Hyp |
Ref |
Expression |
1 |
|
quotval.1 |
|- R = ( F oF - ( G oF x. q ) ) |
2 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
3 |
2
|
sseli |
|- ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) |
4 |
2
|
sseli |
|- ( G e. ( Poly ` S ) -> G e. ( Poly ` CC ) ) |
5 |
|
eldifsn |
|- ( G e. ( ( Poly ` CC ) \ { 0p } ) <-> ( G e. ( Poly ` CC ) /\ G =/= 0p ) ) |
6 |
|
oveq1 |
|- ( g = G -> ( g oF x. q ) = ( G oF x. q ) ) |
7 |
|
oveq12 |
|- ( ( f = F /\ ( g oF x. q ) = ( G oF x. q ) ) -> ( f oF - ( g oF x. q ) ) = ( F oF - ( G oF x. q ) ) ) |
8 |
6 7
|
sylan2 |
|- ( ( f = F /\ g = G ) -> ( f oF - ( g oF x. q ) ) = ( F oF - ( G oF x. q ) ) ) |
9 |
8 1
|
eqtr4di |
|- ( ( f = F /\ g = G ) -> ( f oF - ( g oF x. q ) ) = R ) |
10 |
9
|
sbceq1d |
|- ( ( f = F /\ g = G ) -> ( [. ( f oF - ( g oF x. q ) ) / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) <-> [. R / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) ) ) |
11 |
1
|
ovexi |
|- R e. _V |
12 |
|
eqeq1 |
|- ( r = R -> ( r = 0p <-> R = 0p ) ) |
13 |
|
fveq2 |
|- ( r = R -> ( deg ` r ) = ( deg ` R ) ) |
14 |
13
|
breq1d |
|- ( r = R -> ( ( deg ` r ) < ( deg ` g ) <-> ( deg ` R ) < ( deg ` g ) ) ) |
15 |
12 14
|
orbi12d |
|- ( r = R -> ( ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` g ) ) ) ) |
16 |
11 15
|
sbcie |
|- ( [. R / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` g ) ) ) |
17 |
|
simpr |
|- ( ( f = F /\ g = G ) -> g = G ) |
18 |
17
|
fveq2d |
|- ( ( f = F /\ g = G ) -> ( deg ` g ) = ( deg ` G ) ) |
19 |
18
|
breq2d |
|- ( ( f = F /\ g = G ) -> ( ( deg ` R ) < ( deg ` g ) <-> ( deg ` R ) < ( deg ` G ) ) ) |
20 |
19
|
orbi2d |
|- ( ( f = F /\ g = G ) -> ( ( R = 0p \/ ( deg ` R ) < ( deg ` g ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
21 |
16 20
|
syl5bb |
|- ( ( f = F /\ g = G ) -> ( [. R / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
22 |
10 21
|
bitrd |
|- ( ( f = F /\ g = G ) -> ( [. ( f oF - ( g oF x. q ) ) / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) <-> ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
23 |
22
|
riotabidv |
|- ( ( f = F /\ g = G ) -> ( iota_ q e. ( Poly ` CC ) [. ( f oF - ( g oF x. q ) ) / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) ) = ( iota_ q e. ( Poly ` CC ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
24 |
|
df-quot |
|- quot = ( f e. ( Poly ` CC ) , g e. ( ( Poly ` CC ) \ { 0p } ) |-> ( iota_ q e. ( Poly ` CC ) [. ( f oF - ( g oF x. q ) ) / r ]. ( r = 0p \/ ( deg ` r ) < ( deg ` g ) ) ) ) |
25 |
|
riotaex |
|- ( iota_ q e. ( Poly ` CC ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) e. _V |
26 |
23 24 25
|
ovmpoa |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( ( Poly ` CC ) \ { 0p } ) ) -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
27 |
5 26
|
sylan2br |
|- ( ( F e. ( Poly ` CC ) /\ ( G e. ( Poly ` CC ) /\ G =/= 0p ) ) -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
28 |
27
|
3impb |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( Poly ` CC ) /\ G =/= 0p ) -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
29 |
4 28
|
syl3an2 |
|- ( ( F e. ( Poly ` CC ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |
30 |
3 29
|
syl3an1 |
|- ( ( F e. ( Poly ` S ) /\ G e. ( Poly ` S ) /\ G =/= 0p ) -> ( F quot G ) = ( iota_ q e. ( Poly ` CC ) ( R = 0p \/ ( deg ` R ) < ( deg ` G ) ) ) ) |