Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp.h |
|- H = ( G /s ( G ~QG S ) ) |
2 |
|
qus0.p |
|- .0. = ( 0g ` G ) |
3 |
|
nsgsubg |
|- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
4 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
5 |
3 4
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
6 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
7 |
6 2
|
grpidcl |
|- ( G e. Grp -> .0. e. ( Base ` G ) ) |
8 |
5 7
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> .0. e. ( Base ` G ) ) |
9 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
10 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
11 |
1 6 9 10
|
qusadd |
|- ( ( S e. ( NrmSGrp ` G ) /\ .0. e. ( Base ` G ) /\ .0. e. ( Base ` G ) ) -> ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ ( .0. ( +g ` G ) .0. ) ] ( G ~QG S ) ) |
12 |
8 8 11
|
mpd3an23 |
|- ( S e. ( NrmSGrp ` G ) -> ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ ( .0. ( +g ` G ) .0. ) ] ( G ~QG S ) ) |
13 |
6 9 2
|
grplid |
|- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
14 |
5 8 13
|
syl2anc |
|- ( S e. ( NrmSGrp ` G ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
15 |
14
|
eceq1d |
|- ( S e. ( NrmSGrp ` G ) -> [ ( .0. ( +g ` G ) .0. ) ] ( G ~QG S ) = [ .0. ] ( G ~QG S ) ) |
16 |
12 15
|
eqtrd |
|- ( S e. ( NrmSGrp ` G ) -> ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ .0. ] ( G ~QG S ) ) |
17 |
1
|
qusgrp |
|- ( S e. ( NrmSGrp ` G ) -> H e. Grp ) |
18 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
19 |
1 6 18
|
quseccl |
|- ( ( S e. ( NrmSGrp ` G ) /\ .0. e. ( Base ` G ) ) -> [ .0. ] ( G ~QG S ) e. ( Base ` H ) ) |
20 |
8 19
|
mpdan |
|- ( S e. ( NrmSGrp ` G ) -> [ .0. ] ( G ~QG S ) e. ( Base ` H ) ) |
21 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
22 |
18 10 21
|
grpid |
|- ( ( H e. Grp /\ [ .0. ] ( G ~QG S ) e. ( Base ` H ) ) -> ( ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ .0. ] ( G ~QG S ) <-> ( 0g ` H ) = [ .0. ] ( G ~QG S ) ) ) |
23 |
17 20 22
|
syl2anc |
|- ( S e. ( NrmSGrp ` G ) -> ( ( [ .0. ] ( G ~QG S ) ( +g ` H ) [ .0. ] ( G ~QG S ) ) = [ .0. ] ( G ~QG S ) <-> ( 0g ` H ) = [ .0. ] ( G ~QG S ) ) ) |
24 |
16 23
|
mpbid |
|- ( S e. ( NrmSGrp ` G ) -> ( 0g ` H ) = [ .0. ] ( G ~QG S ) ) |
25 |
24
|
eqcomd |
|- ( S e. ( NrmSGrp ` G ) -> [ .0. ] ( G ~QG S ) = ( 0g ` H ) ) |