Step |
Hyp |
Ref |
Expression |
1 |
|
qus0subg.0 |
|- .0. = ( 0g ` G ) |
2 |
|
qus0subg.s |
|- S = { .0. } |
3 |
|
qus0subg.e |
|- .~ = ( G ~QG S ) |
4 |
|
qus0subg.u |
|- U = ( G /s .~ ) |
5 |
|
qus0subg.b |
|- B = ( Base ` G ) |
6 |
4
|
a1i |
|- ( G e. Grp -> U = ( G /s .~ ) ) |
7 |
5
|
a1i |
|- ( G e. Grp -> B = ( Base ` G ) ) |
8 |
1
|
0subg |
|- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
9 |
2 8
|
eqeltrid |
|- ( G e. Grp -> S e. ( SubGrp ` G ) ) |
10 |
5 3
|
eqger |
|- ( S e. ( SubGrp ` G ) -> .~ Er B ) |
11 |
9 10
|
syl |
|- ( G e. Grp -> .~ Er B ) |
12 |
|
id |
|- ( G e. Grp -> G e. Grp ) |
13 |
1
|
0nsg |
|- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
14 |
2 13
|
eqeltrid |
|- ( G e. Grp -> S e. ( NrmSGrp ` G ) ) |
15 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
16 |
5 3 15
|
eqgcpbl |
|- ( S e. ( NrmSGrp ` G ) -> ( ( x .~ p /\ y .~ q ) -> ( x ( +g ` G ) y ) .~ ( p ( +g ` G ) q ) ) ) |
17 |
14 16
|
syl |
|- ( G e. Grp -> ( ( x .~ p /\ y .~ q ) -> ( x ( +g ` G ) y ) .~ ( p ( +g ` G ) q ) ) ) |
18 |
5 15
|
grpcl |
|- ( ( G e. Grp /\ p e. B /\ q e. B ) -> ( p ( +g ` G ) q ) e. B ) |
19 |
18
|
3expb |
|- ( ( G e. Grp /\ ( p e. B /\ q e. B ) ) -> ( p ( +g ` G ) q ) e. B ) |
20 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
21 |
6 7 11 12 17 19 15 20
|
qusaddval |
|- ( ( G e. Grp /\ a e. B /\ b e. B ) -> ( [ a ] .~ ( +g ` U ) [ b ] .~ ) = [ ( a ( +g ` G ) b ) ] .~ ) |
22 |
21
|
3expb |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( +g ` U ) [ b ] .~ ) = [ ( a ( +g ` G ) b ) ] .~ ) |
23 |
1 2 5 3
|
eqg0subgecsn |
|- ( ( G e. Grp /\ a e. B ) -> [ a ] .~ = { a } ) |
24 |
23
|
adantrr |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> [ a ] .~ = { a } ) |
25 |
1 2 5 3
|
eqg0subgecsn |
|- ( ( G e. Grp /\ b e. B ) -> [ b ] .~ = { b } ) |
26 |
25
|
adantrl |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> [ b ] .~ = { b } ) |
27 |
24 26
|
oveq12d |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( +g ` U ) [ b ] .~ ) = ( { a } ( +g ` U ) { b } ) ) |
28 |
5 15
|
grpcl |
|- ( ( G e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` G ) b ) e. B ) |
29 |
28
|
3expb |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` G ) b ) e. B ) |
30 |
1 2 5 3
|
eqg0subgecsn |
|- ( ( G e. Grp /\ ( a ( +g ` G ) b ) e. B ) -> [ ( a ( +g ` G ) b ) ] .~ = { ( a ( +g ` G ) b ) } ) |
31 |
29 30
|
syldan |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> [ ( a ( +g ` G ) b ) ] .~ = { ( a ( +g ` G ) b ) } ) |
32 |
22 27 31
|
3eqtr3d |
|- ( ( G e. Grp /\ ( a e. B /\ b e. B ) ) -> ( { a } ( +g ` U ) { b } ) = { ( a ( +g ` G ) b ) } ) |
33 |
32
|
ralrimivva |
|- ( G e. Grp -> A. a e. B A. b e. B ( { a } ( +g ` U ) { b } ) = { ( a ( +g ` G ) b ) } ) |