| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qus0subg.0 |
|- .0. = ( 0g ` G ) |
| 2 |
|
qus0subg.s |
|- S = { .0. } |
| 3 |
|
qus0subg.e |
|- .~ = ( G ~QG S ) |
| 4 |
|
qus0subg.u |
|- U = ( G /s .~ ) |
| 5 |
|
qus0subg.b |
|- B = ( Base ` G ) |
| 6 |
|
df-qs |
|- ( B /. .~ ) = { u | E. x e. B u = [ x ] .~ } |
| 7 |
4
|
a1i |
|- ( G e. Grp -> U = ( G /s .~ ) ) |
| 8 |
5
|
a1i |
|- ( G e. Grp -> B = ( Base ` G ) ) |
| 9 |
3
|
ovexi |
|- .~ e. _V |
| 10 |
9
|
a1i |
|- ( G e. Grp -> .~ e. _V ) |
| 11 |
|
id |
|- ( G e. Grp -> G e. Grp ) |
| 12 |
7 8 10 11
|
qusbas |
|- ( G e. Grp -> ( B /. .~ ) = ( Base ` U ) ) |
| 13 |
1 2 5 3
|
eqg0subgecsn |
|- ( ( G e. Grp /\ x e. B ) -> [ x ] .~ = { x } ) |
| 14 |
13
|
eqeq2d |
|- ( ( G e. Grp /\ x e. B ) -> ( u = [ x ] .~ <-> u = { x } ) ) |
| 15 |
14
|
rexbidva |
|- ( G e. Grp -> ( E. x e. B u = [ x ] .~ <-> E. x e. B u = { x } ) ) |
| 16 |
15
|
abbidv |
|- ( G e. Grp -> { u | E. x e. B u = [ x ] .~ } = { u | E. x e. B u = { x } } ) |
| 17 |
6 12 16
|
3eqtr3a |
|- ( G e. Grp -> ( Base ` U ) = { u | E. x e. B u = { x } } ) |