| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusring.u | 
							 |-  U = ( R /s ( R ~QG S ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusring.i | 
							 |-  I = ( 2Ideal ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							qus1.o | 
							 |-  .1. = ( 1r ` R )  | 
						
						
							| 4 | 
							
								1
							 | 
							a1i | 
							 |-  ( ( R e. Ring /\ S e. I ) -> U = ( R /s ( R ~QG S ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( Base ` R ) = ( Base ` R ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` R ) = ( +g ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` R ) = ( .r ` R )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( LIdeal ` R ) = ( LIdeal ` R )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( oppR ` R ) = ( oppR ` R )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) )  | 
						
						
							| 12 | 
							
								9 10 11 2
							 | 
							2idlval | 
							 |-  I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							elin2 | 
							 |-  ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							simplbi | 
							 |-  ( S e. I -> S e. ( LIdeal ` R ) )  | 
						
						
							| 15 | 
							
								9
							 | 
							lidlsubg | 
							 |-  ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylan2 | 
							 |-  ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( R ~QG S ) = ( R ~QG S )  | 
						
						
							| 18 | 
							
								5 17
							 | 
							eqger | 
							 |-  ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er ( Base ` R ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							syl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( R ~QG S ) Er ( Base ` R ) )  | 
						
						
							| 20 | 
							
								
							 | 
							ringabl | 
							 |-  ( R e. Ring -> R e. Abel )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( R e. Ring /\ S e. I ) -> R e. Abel )  | 
						
						
							| 22 | 
							
								
							 | 
							ablnsg | 
							 |-  ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) )  | 
						
						
							| 24 | 
							
								16 23
							 | 
							eleqtrrd | 
							 |-  ( ( R e. Ring /\ S e. I ) -> S e. ( NrmSGrp ` R ) )  | 
						
						
							| 25 | 
							
								5 17 7
							 | 
							eqgcpbl | 
							 |-  ( S e. ( NrmSGrp ` R ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) )  | 
						
						
							| 27 | 
							
								5 17 2 8
							 | 
							2idlcpbl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> R e. Ring )  | 
						
						
							| 29 | 
							
								4 6 7 8 3 19 26 27 28
							 | 
							qusring2 | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ .1. ] ( R ~QG S ) = ( 1r ` U ) ) )  |