Step |
Hyp |
Ref |
Expression |
1 |
|
qus2idrng.u |
|- U = ( R /s ( R ~QG S ) ) |
2 |
|
qus2idrng.i |
|- I = ( 2Ideal ` R ) |
3 |
1
|
a1i |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> U = ( R /s ( R ~QG S ) ) ) |
4 |
|
eqidd |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( Base ` R ) = ( Base ` R ) ) |
5 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
7 |
|
simp3 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( SubGrp ` R ) ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
|
eqid |
|- ( R ~QG S ) = ( R ~QG S ) |
10 |
8 9
|
eqger |
|- ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er ( Base ` R ) ) |
11 |
7 10
|
syl |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( R ~QG S ) Er ( Base ` R ) ) |
12 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
13 |
12
|
3ad2ant1 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Abel ) |
14 |
|
ablnsg |
|- ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
15 |
13 14
|
syl |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
16 |
7 15
|
eleqtrrd |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> S e. ( NrmSGrp ` R ) ) |
17 |
8 9 5
|
eqgcpbl |
|- ( S e. ( NrmSGrp ` R ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) |
18 |
16 17
|
syl |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( +g ` R ) b ) ( R ~QG S ) ( c ( +g ` R ) d ) ) ) |
19 |
8 9 2 6
|
2idlcpblrng |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) ) |
20 |
|
simp1 |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> R e. Rng ) |
21 |
3 4 5 6 11 18 19 20
|
qusrng |
|- ( ( R e. Rng /\ S e. I /\ S e. ( SubGrp ` R ) ) -> U e. Rng ) |